Skip to main content

Advertisement

Log in

Antibiofilm potential over time of a tricalcium silicate material and its association with sodium diclofenac

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The objectives of this study are to investigate, over time, the antimicrobial activity against polymicrobial biofilms and ability to inhibit biofilm formation, of Biodentine (BD) alone and with 5% and 10% sodium diclofenac (DC).

Material and methods

The antimicrobial activity of BD alone and modified with 5% and 10% DC against polymicrobial biofilm growth in dentin was determined by a modified direct contact test. The study groups were (1) BD; (2) BD + 5% DC; and (3) BD + 10% DC. The viability of microorganisms after 1 and 4 weeks was quantified by means of an ATP assay and flow cytometry. The antibiofilm efficacy of the materials, preventing polymicrobial biofilm formation over time, was assessed by confocal laser scanning microscopy (CLSM).

Results

The results obtained with both the ATP test and flow cytometry showed that BD alone and with 5% and 10% DC exerted antibiofilm activity with respect to the control, in the two evaluated times (p < 0.001). Comparison between groups showed a tendency of increased antimicrobial effect, both over time and depending on the DC concentration. These results coincide with those obtained in CLSM analysis, where efficacy increased with time and DC concentration.

Conclusions and clinical relevance

Biodentine, over time, showed antimicrobial and antibiofilm efficacy on polymicrobial biofilms. The addition of 5% and 10% DC to BD enhanced this effect, in a concentration- and time-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Meschi N, Patel B, Ruparel NB (2020) Material pulp cells and tissue interactions. J Endod 46(9S):S150–S160. https://doi.org/10.1016/j.joen.2020.06.031

    Article  PubMed  Google Scholar 

  2. Parirokh M, Torabinejad M, Dummer PMH (2018) Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview—part I: vital pulp therapy. Int Endod J 51:177–205. https://doi.org/10.1111/iej.12841

    Article  PubMed  Google Scholar 

  3. Torabinejad M, Parirokh M, Dummer PMH (2018) Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part II: other clinical applications and complications. Int Endod J 51:284–317. https://doi.org/10.1111/iej.12843

    Article  PubMed  Google Scholar 

  4. Sequeira DB, Oliveira AR, Seabra CM, Palma PJ, Ramos C, Figueiredo MH, Santos AC, Cardoso AL, Peça J, Santos JM (2021) Regeneration of pulp-dentin complex using human stem cells of the apical papilla: in vivo interaction with two bioactive materials. Clin Oral Investig. https://doi.org/10.1007/s00784-021-03840-9

    Article  PubMed  Google Scholar 

  5. Giraud T, Jeanneau C, Rombouts C, Bakhtiar H, Laurent P, About I (2019) Pulp capping materials modulate the balance between inflammation and regeneration. Dent Mater 35:24–35. https://doi.org/10.1016/j.dental.2018.09.008

    Article  Google Scholar 

  6. Wang Z, Shen Y, Haapasalo M (2014) Dental materials with antibiofilm properties. Dent Mater 30(2):e1-16. https://doi.org/10.1016/j.dental.2013.12.001

    Article  PubMed  Google Scholar 

  7. Rajasekharan S, Martens LC, Cauwels RGEC, Anthonappa RP, Verbeeck RMH (2018) Biodentine™ material characteristics and clinical applications: a 3 year literature review and update. Eur Arch Paediatr Dent 19:1–22. https://doi.org/10.1007/s40368-018-0328-x

    Article  PubMed  Google Scholar 

  8. Sahin N, Saygili S, Akcay M (2021) Clinical, radiographic, and histological evaluation of three different pulp-capping materials in indirect pulp treatment of primary teeth: a randomized clinical trial. Clin Oral Investig 25:3945–3955. https://doi.org/10.1007/s00784-020-03724-4

    Article  PubMed  Google Scholar 

  9. Camilleri J, Sorrentino F, Damidot D (2013) Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent Mater 29:580–593. https://doi.org/10.1016/j.dental.2013.03.007

    Article  PubMed  Google Scholar 

  10. Koutroulis A, Kuehne SA, Cooper PR, Camilleri J (2019) The role of calcium ion release on biocompatibility and antimicrobial properties of hydraulic cements. Sci Rep 9(1):19019. https://doi.org/10.1038/s41598-019-55288-3

    Article  PubMed  PubMed Central  Google Scholar 

  11. Arias-Moliz MT, Farrugia C, Lung CYK, Wismayer PS, Camilleri J (2017) Antimicrobial and biological activity of leachate from light curable pulp capping materials. J Dent 64:45–51. https://doi.org/10.1016/j.jdent.2017.06.006

    Article  PubMed  Google Scholar 

  12. Nikhil V, Madan M, Agarwal C, Suri N (2014) Effect of addition of 2% chlorhexidine or 10% doxycycline on antimicrobial activity of biodentine. J Conserv Dent 17:271–275. https://doi.org/10.4103/0972-0707.131795

    Article  PubMed  PubMed Central  Google Scholar 

  13. Poggio C, Arciola CR, Beltrami R, Monaco A, Dagna A, Lombardini M, Visai L (2014) Cytocompatibility and antibacterial properties of capping materials. ScientificWorldJournal 2014:181945. https://doi.org/10.1155/2014/181945

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bhavana V, Chaitanya KP, Gandi P, Patil J, Dola B, Reddy RB (2015) Evaluation of antibacterial and antifungal activity of new calcium-based cement (Biodentine) compared to MTA and glass ionomer cement. J Conserv Dent 18:44–46. https://doi.org/10.4103/0972-0707.148892

    Article  PubMed  PubMed Central  Google Scholar 

  15. Koruyucu M, Topcuoglu N, Tuna EB, Ozel S, Gencay K, Kulekci G, Seymen F (2015) An assessment of antibacterial activity of three pulp capping materials on Enterococcus faecalis by a direct contact test: An in vitro study. Eur J Dent 9:240–245. https://doi.org/10.4103/1305-7456.156837

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ceci M, Beltrami R, Chiesa M, Colombo M, Poggio C (2015) Biological and chemical-physical properties of root-end filling materials: a comparative study. J Conserv Dent 18:94–99. https://doi.org/10.4103/0972-0707.153058

    Article  PubMed  PubMed Central  Google Scholar 

  17. Özyürek T, Demiryürek EÖ (2016) Comparison of the antimicrobial activity of direct pulp-capping materials: mineral trioxide aggregate-Angelus and Biodentine. J Conserv Dent 19:569–572. https://doi.org/10.4103/0972-0707.194018

    Article  PubMed  PubMed Central  Google Scholar 

  18. Farrugia C, Lung CYK, Schembri Wismayer P, Arias-Moliz MT, Camilleri J (2018) The relationship of surface characteristics and antimicrobial performance of pulp capping materials. J Endod 44:1115–1120. https://doi.org/10.1016/j.joen.2018.04.002

    Article  PubMed  Google Scholar 

  19. Deveci C, Tuzuner T, Cinar C, Odabas ME, Buruk CK (2019) Short-term antibacterial activity and compressive strength of biodentine containing chlorhexidine/cetirimide mixtures. Niger J Clin Pract 22:227–231. https://doi.org/10.4103/njcp.njcp_436_18

    Article  PubMed  Google Scholar 

  20. Elsaka SE, Elnaghy AM, Mandorah A, Elshazli AH (2019) Effect of titanium tetrafluoride addition on the physicochemical and antibacterial properties of Biodentine as intraorfice barrier. Dent Mater 35:185–193. https://doi.org/10.1016/j.dental.2018.11.019

    Article  PubMed  Google Scholar 

  21. Çırakoğlu S, Baddal B, İslam A (2020) The effectiveness of laser-activated irrigation on the apical microleakage qualities of MTA repair HP and NeoMTA plus in simulated immature teeth: a comparative study. Materials (Basel) 13(15):3287. https://doi.org/10.3390/ma13153287

    Article  Google Scholar 

  22. Queiroz MB, Torres FFE, Rodrigues EM, Viola KS, Bosso-Martelo R, Chavez- Andrade GM, Souza MT, Zanotto ED, Guerreiro-Tanomaru JM, Tanomaru-Filho M (2021) Development and evaluation of reparative tricalcium silicate-ZrO2-Biosilicate composites. J Biomed Mater Res B Appl Biomater 109:468–476. https://doi.org/10.1002/jbm.b.34714

    Article  PubMed  Google Scholar 

  23. Pepelenko Pelepenko LE, Saavedra F, Antunes TBM, Bombarda GF, Gomes BPFA, Zaia AA, Camilleri J, Marciano MA (2021) Physicochemical, antimicrobial, and biological properties of White-MTAFlow. Clin Oral Investig 25:663–672. https://doi.org/10.1007/s00784-020-03543-7

    Article  PubMed  Google Scholar 

  24. Marggraf T, Ganas P, Paris S, Schwendicke F (2018) Bacterial reduction in sealed caries lesions is strain- and material-specific. Sci Rep 8(1):3767. https://doi.org/10.1038/s41598-018-21842-8

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jardine AP, Montagner F, Quintana RM, Zaccara IM, Kopper PMP (2019) Antimicrobial effect of bioceramic cements on multispecies microcosm biofilm: a confocal laser microscopy study. Clin Oral Investig 23:1367–1372. https://doi.org/10.1007/s00784-018-2551-6

    Article  PubMed  Google Scholar 

  26. Dastidar SG, Ganguly K, Chaudhuri K, Chakrabarty AN (2000) The anti-bacterial action of diclofenac shown by inhibition of DNA synthesis. Int J Antimicrob Agents 14:249–251. https://doi.org/10.1016/s0924-8579(99)00159-4

    Article  PubMed  Google Scholar 

  27. Dutta NK, Annadurai S, Mazumdar K, Dastidar SG, Kristiansen JE, Molnar J, Martins M, Amaral L (2007) Potential management of resistant microbial infections with a novel non-antibiotic: the anti-inflammatory drug diclofenac sodium. Int J Antimicrob Agents 30:242–249. https://doi.org/10.1016/j.ijantimicag.2007.04.018

    Article  PubMed  Google Scholar 

  28. Mazumdar K, Dastidar SG, Park JH, Dutta NK (2009) The anti-inflammatory non-antibiotic helper compound diclofenac: an antibacterial drug target. Eur J Clin Microbiol Infect Dis 28:881–891. https://doi.org/10.1007/s10096-009-0739-z

    Article  PubMed  Google Scholar 

  29. Ferrer-Luque CM, Baca P, Solana C, Rodríguez-Archilla A, Arias-Moliz MT, Ruiz-Linares M (2021) Antibiofilm activity of diclofenac and antibiotic solutions in endodontic therapy. J Endod 47(7):1138–1143. https://doi.org/10.1016/j.joen.2021.04.004

    Article  PubMed  Google Scholar 

  30. de Freitas RP, Greatti VR, Alcalde MP, Cavenago BC, Vivan RR, Duarte MA, Weckwerth AC, Weckwerth PH (2017) Effect of the association of nonsteroidal anti-inflammatory and antibiotic drugs on antibiofilm activity and pH of calcium hydroxide pastes. J Endod 43:131–134. https://doi.org/10.1016/j.joen.2016.09.014

    Article  PubMed  Google Scholar 

  31. Ruiz-Linares M, Aguado-Pérez B, Baca P, Arias-Moliz MT, Ferrer-Luque CM (2017) Efficacy of antimicrobial solutions against polymicrobial root canal biofilm. Int Endod J 50:77–83. https://doi.org/10.1111/iej.12598

    Article  PubMed  Google Scholar 

  32. Zordan-Bronzel CL, Tanomaru-Filho M, Rodrigues EM, Chavez-Andrade GM, Faria G, Guerreiro-Tanomaru JM (2019) Cytocompatibility, bioactive potential and antimicrobial activity of an experimental calcium silicate based endodontic sealer. Int Endod J 52:979–986. https://doi.org/10.1111/iej.13086

    Article  PubMed  Google Scholar 

  33. Balouiri M, Sadiki M, Koraichi Ibnsouda S (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharma Anal 6:71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  Google Scholar 

  34. Tan KS, Yu VS, Quah SY, Bergenholtz G (2015) Rapid method for the detection of root canal bacteria in endodontic therapy. J Endod 41:447–450. https://doi.org/10.1016/j.joen.2014.11.025

    Article  PubMed  Google Scholar 

  35. Ruiz-Linares M, Baca P, Arias-Moliz MT, Ternero FJ, Rodríguez J, Ferrer-Luque CM (2019) Antibacterial and antibiofilm activity over time of GuttaFlow Bioseal and AH plus. Dent Mater J 38:701–706. https://doi.org/10.4012/dmj.2018-090

    Article  PubMed  Google Scholar 

  36. Chavez de Paz LE (2009) Image analysis software based on color segmentation for characterization of viability and physiological activity of biofilms. Appl Environ Microbiol 75:1734–1739. https://doi.org/10.1128/AEM.02000-08

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shen Y, Stojicic S, Haapasalo M (2011) Antimicrobial efficacy of chlorhexidine against bacteria in biofilms at different stages of development. J Endod 37:657–661. https://doi.org/10.1016/j.joen.2011.02.007

    Article  PubMed  Google Scholar 

  38. Haapasalo M, Qian W, Portenier I, Waltimo T (2007) Effects of dentin on the antimicrobial properties of endodontic medicaments. J Endod 33:917–925. https://doi.org/10.1016/j.joen.2007.04.008

    Article  PubMed  Google Scholar 

  39. Bukhari S, Karabucak B (2019) The antimicrobial effect of bioceramic sealer on an 8-week matured Enterococcus faecalis biofilm attached to root canal dentinal surface. J Endod 45:1047–1052. https://doi.org/10.1016/j.joen.2019.04.004

    Article  PubMed  Google Scholar 

  40. Amalfitano S, Levantesi C, Copetti D, Stefani F, Locantore I, Guarnieri V, Lobascio C, Bersani F, Giacosa D, Detsis E, Rossetti S (2020) Water and microbial monitoring technologies towards the near future space exploration. Water Res 15(177):115787. https://doi.org/10.1016/j.watres.2020.115787

    Article  Google Scholar 

  41. Shen Y, Stojicic S, Haapasalo M (2010) Bacterial viability in starved and revitalized biofilms: comparison of viability staining and direct culture. J Endod 36:1820–1823. https://doi.org/10.1016/j.joen.2010.08.029

    Article  PubMed  Google Scholar 

  42. Shen Y, Wang Z, Wang J, Zhou Y, Chen H, Wu C, Haapasalo M (2016) Bifunctional bioceramics stimulating osteogenic differentiation of a gingival fibroblast and inhibiting plaque biofilm formation. Biomater Sci 4:639–651. https://doi.org/10.1039/c5bm00534e

    Article  PubMed  Google Scholar 

  43. Zehnder M, Waltimo T, Sener B, Söderling E (2006) Dentin enhances the effectiveness of bioactive glass S53P4 against a strain of Enterococcus faecalis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101:530–535. https://doi.org/10.1016/j.tripleo.2005.03.014

    Article  PubMed  Google Scholar 

  44. Gandolfi MG, Siboni F, Polimeni A, Bossu FR, Riccitiello F, Rengo S, Prati C (2013) In vitro screening of the apatite-forming ability, biointeractivity and physical properties of a tricalcium silicate material for endodontics and restorative dentistry. Dent J 1:41–60. https://doi.org/10.3390/dj1040041

    Article  Google Scholar 

  45. Gubler M, Brunner TJ, Zehnder M, Waltimo T, Sener B, Stark WJ (2008) Do bioactive glasses convey a disinfecting mechanism beyond a mere increase in pH? Int Endod J 41:670–678. https://doi.org/10.1111/j.1365-2591.2008.01413.x

    Article  PubMed  Google Scholar 

  46. Zhang H, Pappen FG, Haapasalo M (2009) Dentin enhances the antibacterial effect of mineral trioxide aggregate and bioaggregate. J Endod 35:221–224. https://doi.org/10.1016/j.joen.2008.11.001

    Article  PubMed  Google Scholar 

  47. Bukhari S, Karabucak B (2019) The antimicrobial effect of bioceramic sealer on an 8-week matured Enterococcus faecalis biofilm attached to root canal dentinal surface. J Endod 45:1047–1052. https://doi.org/10.1016/j.joen.2019.04.004

    Article  PubMed  Google Scholar 

  48. Riordan JT, Dupre JM, Cantore-Matyi SA, Kumar-Singh A, Song Y, Zaman S, Horan S, Helal NS, Nagarajan V, Elasri MO, Wilkinson BJ, Gustafson JE (2011) Alterations in the transcriptome and antibiotic susceptibility of Staphylococcus aureus grown in the presence of diclofenac. Ann Clin Microbiol Antimicrob 21(10):30. https://doi.org/10.1186/1476-0711-10-30

    Article  Google Scholar 

  49. Giraud T, Rufas P, Chmilewsky F, Rombouts C, Dejou J, Jeanneau C, About I (2017) Complement activation by pulp capping materials plays a significant role in bothinflammatory and pulp stem cells’ recruitment. J Endod 43:1104–1110. https://doi.org/10.1016/j.joen.2017.02.016

    Article  PubMed  Google Scholar 

  50. Giraud T, Jeanneau C, Bergmann M, Laurent P, About I (2018) Tricalcium Silicate capping materials modulate pulp healing and inflammatory activity in vitro. J Endod 44:1686–1691. https://doi.org/10.1016/j.joen.2018.06.009

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Francisca Castillo Pérez, Gertrudis Gomez Villaescusa, and Ana Santos Carro for their technical assistance.

Funding

This study is supported by Research Group CTS-167 of the Junta de Andalucía, Seville, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Solana.

Ethics declarations

Ethics approval

The procedures and study protocol described here were approved by the Ethics Committee of the University of Granada, Spain (no. 1076 CEIH/2020). All procedures performed in studies involving human participants were in accordance with the ethical standards of the Institutional Review Board and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Linares, M., Solana, C., Baca, P. et al. Antibiofilm potential over time of a tricalcium silicate material and its association with sodium diclofenac. Clin Oral Invest 26, 2661–2669 (2022). https://doi.org/10.1007/s00784-021-04237-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-04237-4

Keywords

Navigation