Skip to main content
Log in

The effects of antipsychotics on weight gain, weight-related hormones and homocysteine in children and adolescents: a 1-year follow-up study

  • Original Contribution
  • Published:
European Child & Adolescent Psychiatry Aims and scope Submit manuscript

Abstract

To analyze weight gain, metabolic hormones, and homocysteine (Hcys) levels in children and adolescents on antipsychotics (AP) during a year-long follow-up. 117 patients, AP-naïve or quasi-naïve (less than 30 days on AP), were included. Weight, body mass index (BMI), BMI z-score (z-BMI), and levels of leptin, insulin, insulin resistance (HOMA-IR), adiponectin, ghrelin, thyroid stimulating hormone (TSH), free thyroxine (FT4), and Hcys were measured at baseline, and at 3, 6, and 12 months, while patients remained on the same AP. Patients (mean age: 14.4 ± 3 years; 64.1 % male) were on risperidone (N = 84), olanzapine (N = 20) or quetiapine (N = 13) from baseline up to 1-year follow-up and significantly increased weight (5.8 ± 4.3 kg at 3-month, 8.1 ± 6.1 kg at 6-month, and 11.6 ± 7.0 kg at 1 year), BMI, and z-BMI. Leptin levels significantly increased from baseline to 3 and 6 months, as did TSH levels from baseline to 3 months, while FT4 levels decreased from baseline to 3 and 6 months. Patients with BMI >85th percentile at baseline (N = 16) significantly increased weight, BMI, and z-BMI, more than patients with normal BMI over time. Higher baseline levels of insulin, HOMA-IR, and leptin were associated with increased weight/BMI during follow-up, while higher baseline levels of FT4, adiponectin, and ghrelin were associated with lower weight/BMI during follow-up. All AP were associated with increased weight and BMI/z-BMI in all of the assessments; however, at 1-year assessment, this increase was significantly higher for patients on quetiapine. Both higher baseline levels of insulin, HOMA-IR, and leptin, as well as being overweight/obese at baseline were associated with increased weight/BMI during 1-year follow-up in children and adolescents on AP. Awareness of weight-related parameters in this population may help inform decisions regarding AP prescriptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baeza I, De la Serna E, Calvo-Escalona R, Morer A, Merchán-Naranjo J, Tapia C, Martínez-Cantarero MC, Andrés P, Alda JA, Sánchez B, Arango C, Castro-Fornieles J (2014) Antipsychotic use in children and adolescents. A 1-year follow-up study. J Clin Psychopharmacol 5:613–619

    Article  Google Scholar 

  2. Olfson M, Blanco C, Liu SM, Wang S, Correll CU (2012) National trends in the office-based treatment of children, adolescents, and adults with antipsychotics. Arch Gen Psychiatry 69:1247–1256

    Article  PubMed  Google Scholar 

  3. Fraguas D, Correll CU, Merchán-Naranjo J, Rapado-Castro M, Parellada M, Moreno C, Arango C (2011) Efficacy and safety of second-generation antipsychotics in children and adolescents with psychotic and bipolar spectrum disorders: comprehensive review of prospective head-to-head and placebo-controlled comparisons. Eur Neuropsychopharmacol 21:621–645

    Article  CAS  PubMed  Google Scholar 

  4. Arango C (2015) Present and future of developmental neuropsychopharmacology. Eur Neuropsychopharmacol 25:703–712

    Article  CAS  PubMed  Google Scholar 

  5. Correll CU, Manu P, Olshanskiy V, Napolitano B, Kane JM, Malhotra AK (2009) Cardiometabolic risk of second-generation antipsychotic medications during first-time use in children and adolescents. JAMA 302:1765–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fleischhaker C, Heiser P, Hennighausen K, Herpertz-Dahlmann B, Holtkamp K, Mehler-Wex C, Rauh R, Remschmidt H, Schulz E, Warnke A (2006) Clinical drug monitoring in child and adolescent psychiatry: side effects of atypical neuroleptics. J Child Adolesc Psychopharmacol 16:308–316

    Article  PubMed  Google Scholar 

  7. Safer DJ (2004) A comparison of risperidone-induced weight gain across the age span. J Clin Psychopharmacol 24:429–436

    Article  CAS  PubMed  Google Scholar 

  8. Martínez-Ortega JM, Funes-Godoy S, Díaz-Atienza F, Gutiérrez-Rojas L, Pérez-Costillas L, Gurpegui M (2013) Weight gain and increase of body mass index among children and adolescents treated with antipsychotics: a critical review. Eur Child Adolesc Psychiatry 22:457–479

    Article  PubMed  Google Scholar 

  9. Cohn TA, Sernyak MJ (2006) Metabolic monitoring for patients treated with antipsychotic medications. Can J Psychiatry 51:492–501

    Article  PubMed  Google Scholar 

  10. Allison DB, Mentore JL, Heo M, Chandler LP, Cappelleri JC, Infante MC (1999) Antipsychotic-induced weight gain: a comprehensive research synthesis. Am J Psychiatry 156:1686–1696

    CAS  PubMed  Google Scholar 

  11. Deng C, Weston-Green K, Huang X (2010) The role of histaminergic H1 and H3 receptors in food intake: a mechanism for atypical antipsychotic-induced weight gain? Prog Neuropsychopharmacol Biol Psychiatry 34:1–4

    Article  PubMed  Google Scholar 

  12. Baptista T (1999) Body weight gain induced by antipsychotic drugs: mechanisms and management. Acta Psychiatr Scand 100:3–16

    Article  CAS  PubMed  Google Scholar 

  13. Cuerda C, Velasco C, Merchán-Naranjo J, García-Peris P, Arango C (2014) The effects of second-generation antipsychotics on food intake, resting energy expenditure and physical activity. Eur J Clin Nutr 68:146–152

    Article  CAS  PubMed  Google Scholar 

  14. Havel PJ (2001) Peripheral signals conveying metabolic information to the brain: short-term and long-term regulation of food intake and energy homeostasis. Exp Biol Med (Maywood). 226:963–977

    CAS  PubMed  Google Scholar 

  15. Friedman JM (2002) The function of leptin in nutrition, weight, and physiology. Nutr Rev 60:S1–14 (discussion S68–84, 85–87)

  16. Sentissi O, Epelbaum J, Olié JP, Poirier MF (2008) Leptin and ghrelin levels in patients with schizophrenia during different antipsychotics treatment: a review. Schiz Bull 34:1189–1199

    Article  Google Scholar 

  17. Barsh GS, Schwartz MW (2002) Genetic approaches to studying energy balance: perception and integration. Nat Rev Genet 3:589–600

    CAS  PubMed  Google Scholar 

  18. Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S (2001) A role for ghrelin in the central regulation of feeding. Nature 409:194–198

    Article  CAS  PubMed  Google Scholar 

  19. Lucidi P, Murdolo G, Di Loreto C, Parlanti N, De Cicco A, Ranchelli A, Fatone C, Taglioni C, Fanelli C, Santeusanio F, De Feo P (2004) Meal intake similarly reduces circulating concentrations of octanoyl and total ghrelin in humans. J Endocrinol Invest 27:RC12–5

  20. Heilbronn LK, Smith SR, Ravussin E (2003) The insulin-sensitizing role of the fat derived hormone adiponectin. Curr Pharm Des 9:1411–1418

    Article  CAS  PubMed  Google Scholar 

  21. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA (2001) Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinmia. J Clin Endocrinol Metab 86:1930–1935

    Article  CAS  PubMed  Google Scholar 

  22. Reinehr T (2010) Obesity and thyroid function. Mol Cel Endocrinol 316:165–171

    Article  CAS  Google Scholar 

  23. Reinehr T (2011) Thyroid function in the nutritionally obese child and adolescent. Curr Opin Pediatrics 23:415–420

    Article  CAS  Google Scholar 

  24. Aypak C, Türedi O, Yüce A, Görpelioğlu S (2013) Thyroid-stimulating hormone (TSH) level in nutritionally obese children and metabolic co-morbidity. J Pediatr Endocrinol Metab 26:703–708

    Article  CAS  PubMed  Google Scholar 

  25. Jacobellis G, Ribaudo MC, Zappaterreno A, Iannucci CV, Leonetti F (2005) Relationship of thyroid function with body mass index, leptin, insulin sensitivity and adiponectin in euthyroid obese women. Clin Endocrinol 62:487–491

    Article  Google Scholar 

  26. Roef G, Lapauw B, Goemaere S, Zmierczak HG, Toye K, Kaufman JM, Taes Y (2012) Body composition and metabolic parameters are associated with variation in thyroid hormone levels among euthyroid young men. Eur J Endocrinol 167:719–726

    Article  CAS  PubMed  Google Scholar 

  27. Martí-Carvajal AJ, Solà I, Lathyris D, Karakitsiou DE, Simancas-Racines D (2013) Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev 1:CD006612. doi:10.1002/14651858.CD006612.pub3

  28. Karatela RA, Sainani GS (2009) Plasma homocysteine in obese, overweight and hypertensive subjects in Mumbai. Indian Heart 61:156–159

    Google Scholar 

  29. Vayá A, Carmona P, Badia N, Pérez R, Hernandez Mijares A, Corella D (2011) Homocysteine levels and the metabolic syndrome in a Mediterranean population: a case-control study. Clin Hemorheol Microcirc 47:59–66

    PubMed  Google Scholar 

  30. Yakub M, Schulze KJ, Khatry SK, Stewart CP, Christian P, West KP Jr (2014) High Plasma Homocysteine increases risk of metabolic syndrome in 6–8 year old children in rural Nepal. Nutrients 6:1649–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jin H, Meyer JM, Mudaliar S, Jeste DV (2008) Impact of atypical antipsychotic therapy on leptin, ghrelin and adiponectin. Schiz Res 100:70–85

    Article  Google Scholar 

  32. Palik E, Birkas KD, Faludi G, Karádi I, Cseh K (2005) Correlation of serum ghrelin levels with body mass index and carbohydrate metabolism in patients treated with atypical antipsychotics. Diabetes Res Clin Pract 68(suppl 1):S60–S64

    Article  CAS  PubMed  Google Scholar 

  33. Perez-Iglesias R, Vazquez-Barquero JL, Amado JA, Berja A, Garcia-Unzueta MT, Pelayo-Terán JM, Carrasco-Marín E, Mata I, Crespo-Facorro B (2008) Effect of antipsychotics on peptides involved in energy balance in drug-naive psychotic patients after 1 year of treatment. J Clin Psychopharmacol 28:289–295

    Article  CAS  PubMed  Google Scholar 

  34. Basoglu C, Oner O, Gunes C, Semiz UB, Ates AM, Algul A, Ebrinc S, Cetin M, Ozcan O, Ipcioglu O (2010) Plasma orexin A, ghrelin, cholecistokinin, visfasin, leptin and agouti-related protein levels during 6-week olanzapine treatment in first-episode male patients with psychosis. Int Clin Psychopharmacol 25:165–171

    Article  PubMed  Google Scholar 

  35. Richards AA, Hickman IJ, Wang AY, Jones AL, Newell F, Mowry BJ, Whitehead JP, Prins JB, Macdonald GA (2006) Olanzapine treatment is associated with reduced high molecular weight adiponectin in serum: a potential mechanism for olanzapine-induced insulin resistance in patients with schizophrenia. J Clin Psychopharmacol 26:232–237

    Article  CAS  PubMed  Google Scholar 

  36. Sporn AL, Bobb AJ, Gogtay N, Stevens H, Greenstein DK, Clasen LS, Tossell JW, Nugent T, Gochman PA, Sharp WS, Mattai A, Lenane MC, Yanovski JA, Rapoport JL (2005) Hormonal correlates of clozapine-induced weight gain in psychotic children: an exploratory study. J Am Acad Child Adolesc Psychiatry 44:925–933

    Article  PubMed  Google Scholar 

  37. Maayan LA, Vakhrusheva J (2010) Risperidone associated weight, leptin, and anthropometric changes in children and adolescents with psychotic disorders in early treatment. Human Psychopharmacol 25:133–138

    Article  CAS  Google Scholar 

  38. Martin A, Scahill L, Anderson G, Aman M, Arnold LE, McCracken J, McDougle CJ, Tierney E, Chuang S, Vitiello B (2004) Weight and leptin changes among risperidone-treated youths with autism: 6-month prospective data. Am J Psychiatry 161:1125–1127

    Article  PubMed  Google Scholar 

  39. Calarge CA, Acion L, Kuperman S, Tansey M, Schlechte JA (2009) Weight gain and metabolic abnormalities during extended risperidone treatment in children and adolescents. J Child Adol Psychopharmacol 19:101–109

    Article  Google Scholar 

  40. Merchan-Naranjo J, Tapia C, Bailón C, Moreno C, Baeza I, Calvo-Escalona R, Morer A, Martínez-Cantarero C, Nestares PA, Alda JÁ, Muñoz D, Arango C (2012) Secondary effects of antipsychotic treatment in naïve or quasi-naïve children and adolescents: design of a follow-up protocol and baseline results. Rev Psiquiatr Salud Ment 5:217–228

    Article  PubMed  Google Scholar 

  41. Andreasen NC, Pressler M, Nopoulos P, Miller D, Ho BC (2010) Antipsychotic dose equivalents and dose-years: a standardized method for comparing exposure to different drugs. Biol Psychiatry 67:255–262

    Article  CAS  PubMed  Google Scholar 

  42. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  PubMed  Google Scholar 

  43. Sobradillo B, Aguirre A, Aresti U, Bilbao C, Fernández-Ramos A, Lizarraga H, Lorenzo L, Madariaga I, Rica I, Ruiz E, Sánchez C Santamaría, Serrano JM, Zabala A, Zurimendi B, Hernández M (2004) Curvas y tablas de crecimiento: estudios longitudinal y transversal. Fundación Faustino Orbegozo Eizaguirre, Bilbao

    Google Scholar 

  44. Flodmark CE, Lissau I, Moreno LA, Pietrobelli A, Widhalm K (2004) New insights into the field of children and adolescents’ obesity: the European perspective. Int J Obes Relat Metab Disord 28:1189–1196

    Article  PubMed  Google Scholar 

  45. Arango C, Giráldez M, Merchán-Naranjo J, Baeza I, Castro-Fornieles J, Alda JA, Martínez-Cantarero C, Moreno C, de Andrés P, Cuerda C, de la Serna E, Correll CU, Fraguas D, Parellada M (2014) Second-generation antipsychotic use in children and adolescents; a 6-month prospective cohort study in drug-naïve patients. J Am Acad Child Adol Psychiatry 53:1179–1190

    Article  Google Scholar 

  46. McIntyre RS, Jerrell JM (2008) Metabolic and cardiovascular adverse events associated with antipsychotic treatment in children and adolescents. Arch Pediatr Adolesc Med 162:929–935

    Article  PubMed  Google Scholar 

  47. Faraone SV, Biederman J, Morley CP, Spencer TJ (2008) Effect of stimulants on height and weight: a review of the literature. J Am Acad Child Adolesc Psychiatry 47:994–1009

    PubMed  Google Scholar 

  48. Penzner JB, Dudas M, Saito E, Olshanskiy V, Parikh UH, Kapoor S, Chekuri R, Gadaleta D, Avedon J, Sheridan EM, Randell J, Malhotra AK, Kane JM, Correll CU (2009) Lack of effect of stimulant combination with second-generation antipsychotics on weight gain, metabolic changes, prolactin levels, and sedation in youth with clinically relevant aggression or oppositionality. J Child Adolesc Psychopharmacol. 19:563–573

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gentile S (2009) Contributing factors to weight gain during long-term treatment with second-generation antipsychotics. A systematic appraisal and clinical implications. Obes Rev 10:527–542

    Article  CAS  PubMed  Google Scholar 

  50. Gonzaga NC, Medeiros CC, de Carvalho DF, Alves JG (2014) Leptin and cardiometabolic risk factors in obese children and adolescents. J Paediatr Child Health 50:707–712

    Article  PubMed  Google Scholar 

  51. Poveda E, Callas NE, Baracaldo CM, Castillo C, Hernández P (2007) Leptin levels in school age children associated with antropometric measurements and lipid profiles. Biomedica 27:505–514

    Article  PubMed  Google Scholar 

  52. Venner AA, Lyon ME, Doyle-Baker PK (2006) Leptin: a potencial biomarker for childhood obesity? Clin. Biochem 39:1047–1056

    CAS  Google Scholar 

  53. Karavani G, Strich D, Edri S, Gillis D (2014) Increases in thyrotropin within the near-normal range are associated with increased triiodothyronine but not increased thyroxine in the pediatric age. J Clin Endocrinol Metab 99(8):E1471–5. doi:10.1210/jc.2014-1441 (Epub 2014 May 30)

  54. Marras V, Casini MR, Pilia S, Carta D, Civolani P, Porcu M, Uccheddu AP, Loche S (2010) Thyroid function in obese children and adolescents. Horm Res Paediatr 73:193–197

    Article  CAS  PubMed  Google Scholar 

  55. Margari L, Matera E, Craig F, Petruzzelli MG, Palmieri VO, Pastore A, Margari F (2013) Tolerability and safety profile of risperidone in a sample of children and adolescents. Int Clin Psychopharmacol 28:177–183

    PubMed  Google Scholar 

  56. Misiak B, Frydecka D, Laczmanski L, Slezak R, Kiejna A (2014) Effects of second-generation antipsychotics on selected markers of one-carbon metabolism and metabolic syndrome components in first-episode schizophrenia patients. Eur J Clin Pharmacol. doi:10.1007/s00228-014-1762-2

    PubMed  PubMed Central  Google Scholar 

  57. Nasrallah HA (2008) Atypical antipsychotic-induced metabolic side effects: insights from receptor-binding profiles. Mol Psychiatry. 13:27–35

    Article  CAS  PubMed  Google Scholar 

  58. Catli G, Anik A, Tuhan HÜ, Kume T, Bober E, Abaci A (2014) The relation of leptin and soluble leptin receptor levels with metabolic and clinical parameters in obese and healthy children. Peptides 56:72–76

    Article  CAS  PubMed  Google Scholar 

  59. Friedemann C, Heneghan C, Mahtani K, Thompson M, Perera R, Ward AM (2012) Cardiovascular disease risk in healthy children and its association with body mass index: systematic review and meta-analysis. BMJ 345:e4759. doi:10.1136/bmj.e4759

  60. Ratzoni G, Gothelf D, Brand-Gothelf A, Reidman J, Kikinzon L, Gal G, Phillip M, Apter A, Weizman R (2002) Weight gain associated with olanzapine and risperidone in adolescent patients: a comparative prospective study. J Am Acad Child Adol Psychiatry 41:337–343

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Center for Biomedical Research in the Mental Health Network (CIBERSAM), Madrid (Spain); for partial funding, the following: the Spanish Ministry of Health, Instituto de Salud Carlos III ≪Health Research Fund≫ (F.I.S.-PI04/0455); Madrid Mental Health Association (≪Miguel Angel Martín≫ Research Grant); ≪NARSAD 2005: Independent Investigator Award≫; Alicia Koplowitz and Mutua Madrileña foundations; and the Ministries of Science and Innovation, Community of Madrid, Biomedical R&D funding S2010/BMD-2422 AGES (Madrid) for their support. FP7-HEALTH-F4-2010-241959 (Project PERS—Pediatric European Risperidone Studies). The authors thank Mr. A.D.Pierce for his English editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inmaculada Baeza.

Ethics declarations

Conflict of interest

IB has received honoraria and travel support from Otsuka and Janssen, research support from Fundación Alicia Koplowitz and grants from the Spanish Ministry of Health, Instituto de Salud Carlos III. RCE has a grant from the Spanish Ministry of Health, Instituto de Salud Carlos III, and has received travel support from Shire. CA is a consultant for AstraZeneca, Bristol Myers Squibb, Janssen-Cilag, Pfizer and Servier; has received grants/support from the Spanish Ministry of Health, Instituto de Salud Carlos III, the European Comission, Fundación Alicia Koplowitz, Astra-Zeneca, Bristol Myers Squibb. JCF has been a consultant for Eli Lilly and has received grants from the Spanish Ministry of Health, Instituto de Salud Carlos III, the European Comission and Fundació La Marató de TV3. LV, ES, JMN and PRL declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baeza, I., Vigo, L., de la Serna, E. et al. The effects of antipsychotics on weight gain, weight-related hormones and homocysteine in children and adolescents: a 1-year follow-up study. Eur Child Adolesc Psychiatry 26, 35–46 (2017). https://doi.org/10.1007/s00787-016-0866-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00787-016-0866-x

Keywords

Navigation