Skip to main content
Log in

Genomic and physiological analysis reveals versatile metabolic capacity of deep-sea Photobacterium phosphoreum ANT-2200

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Bacteria of the genus Photobacterium thrive worldwide in oceans and show substantial eco-physiological diversity including free-living, symbiotic and piezophilic life styles. Genomic characteristics underlying this variability across species are poorly understood. Here we carried out genomic and physiological analysis of Photobacterium phosphoreum strain ANT-2200, the first deep-sea luminous bacterium of which the genome has been sequenced. Using optical mapping we updated the genomic data and reassembled it into two chromosomes and a large plasmid. Genomic analysis revealed a versatile energy metabolic potential and physiological analysis confirmed its growth capacity by deriving energy from fermentation of glucose or maltose, by respiration with formate as electron donor and trimethlyamine N-oxide (TMAO), nitrate or fumarate as electron acceptors, or by chemo-organo-heterotrophic growth in rich media. Despite that it was isolated at a site with saturated dissolved oxygen, the ANT-2200 strain possesses four gene clusters coding for typical anaerobic enzymes, the TMAO reductases. Elevated hydrostatic pressure enhances the TMAO reductase activity, mainly due to the increase of isoenzyme TorA1. The high copy number of the TMAO reductase isoenzymes and pressure-enhanced activity might imply a strategy developed by bacteria to adapt to deep-sea habitats where the instant TMAO availability may increase with depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TMAO:

Trimethylamine N-oxide

CDS:

Coding DNA sequence

References

  • Abe F, Kato C, Horikoshi K (1999) Pressure-regulated metabolism in microorganisms. Trends Microbiol 7:447–453

    Article  CAS  PubMed  Google Scholar 

  • AlAli B, Garel M, Cuny P, Miquel JC, Toubal T, Robert A, Tamburini C (2010) Luminous bacteria in the deep-sea waters near the ANTARES underwater neutrino telescope (Mediterranean Sea). Chem Ecol 26:57–72

    Article  Google Scholar 

  • Ansaldi M, Simon G, Lepelletier M, Mejean V (2000) The TorR high-affinity binding site plays a key role in both torR autoregulation and torCAD operon expression in Escherichia coli. J Bacteriol 182:961–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansaldi M, Jourlin-Castelli C, Lepelletier M, Theraulaz L, Mejean V (2001) Rapid dephosphorylation of the TorR response regulator by the TorS unorthodox sensor in Escherichia coli. J Bacteriol 183:2691–2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armengaud J, Trapp J, Pible O, Geffard O, Chaumot A, Hartmann EM (2014) Non-model organisms, a species endangered by proteogenomics. J Proteomics 105:5–18

    Article  CAS  PubMed  Google Scholar 

  • Ast JC, Dunlap PV (2005) Phylogenetic resolution and habitat specificity of members of the Photobacterium phosphoreum species group. Environ Microbiol 7:1641–1654

    Article  CAS  PubMed  Google Scholar 

  • Bordi C, Ansaldi M, Gon S, Jourlin-Castelli C, Iobbi-Nivol C, Mejean V (2004) Genes regulated by TorR, the trimethylamine oxide response regulator of Shewanella oneidensis. J Bacteriol 186:4502–4509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campanaro S et al (2005) Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains. BMC Genomics 6:122

    Article  PubMed  PubMed Central  Google Scholar 

  • Christie-Oleza JA, Fernandez B, Nogales B, Bosch R, Armengaud J (2012) Proteomic insights into the lifestyle of an environmentally relevant marine bacterium. ISME J 6:124–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dryselius R, Kurokawa K, Iida T (2007) Vibrionaceae, a versatile bacterial family with evolutionarily conserved variability. Res Microbiol 158:479–486

    Article  CAS  PubMed  Google Scholar 

  • El-Hajj ZW, Allcock D, Tryfona T, Lauro FM, Sawyer L, Bartlett DH, Ferguson GP (2010) Insights into piezophily from genetic studies on the deep-sea bacterium, Photobacterium profundum SS9. Ann N Y Acad Sci 1189:143–148

    Article  CAS  PubMed  Google Scholar 

  • Eloe EA, Lauro FM, Vogel RF, Bartlett DH (2008) The deep-sea bacterium Photobacterium profundum SS9 utilizes separate flagellar systems for swimming and swarming under high-pressure conditions. Appl Envionment Microbiol 74:6298–6305

    Article  CAS  Google Scholar 

  • Frankel RB, Bazylinski DA, Johnson MS, Taylor BL (1997) Magneto-aerotaxis in marine coccoid bacteria. Biophys J 73:994–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genest O, Ilbert M, Mejean V, Iobbi-Nivol C (2005) TorD, an essential chaperone for TorA molybdoenzyme maturation at high temperature. J Biol Chem 280:15644–15648

    Article  CAS  PubMed  Google Scholar 

  • Le Bihan T, Rayner J, Roy MM, Spagnolo L (2013) Photobacterium profundum under pressure: a MS-based label-free quantitative proteomics study. PLoS One 8:e60897

    Article  PubMed  PubMed Central  Google Scholar 

  • Martini S et al (2013) Effects of hydrostatic pressure on growth and luminescence of a moderately-piezophilic luminous bacteria Photobacterium phosphoreum ANT-2200. PLoS One 8:e66580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada K, Iida T, Kita-Tsukamoto K, Honda T (2005a) Vibrios commonly possess two chromosomes. J Bacteriol 187:752–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada K, Iida T, Kita-Tsukamoto K, Honda T (2005b) Vibrios commonly possess two chromosomes. J Bacteriol 187:752–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan J et al (2012) Architecture of a flagellar apparatus in the fast-swimming magnetotactic bacterium MO-1. Proc Natl Acad Sci USA 109:20643–20648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santini CL, Ize B, Chanal A, Muller M, Giordano G, Wu LF (1998) A novel sec-independent periplasmic protein translocation pathway in Escherichia coli. EMBO J 17:101–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon G, Jourlin C, Ansaldi M, Pascal MC, Chippaux M, Mejean V (1995) Binding of the TorR regulator to cis-acting direct repeats activates tor operon expression. Mol Microbiol 17:971–980

    Article  CAS  PubMed  Google Scholar 

  • Tamburini C et al (2013) Deep-sea bioluminescence blooms after dense water formation at the ocean surface. PLoS One 8:e67523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbanczyk H et al (2011) Genome sequence of Photobacterium mandapamensis strain svers.1.1, the bioluminescent symbiont of the cardinal fish Siphamia versicolor. J Bacteriol 193:3144–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallenet D et al (2013) MicroScope–an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res 41:D636–D647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vezzi A et al (2005) Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:1459–1461

    Article  CAS  PubMed  Google Scholar 

  • Wang F et al (2008) Environmental adaptation: genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium Shewanella piezotolerans WP3. PLoS One 3:e1937

    Article  PubMed  PubMed Central  Google Scholar 

  • Welch TJ, Bartlett DH (1998) Identification of a regulatory protein required for pressure-responsive gene expression in the deep-sea bacterium Photobacterium species strain SS9. Mol Microbiol 27:977–985

    Article  CAS  PubMed  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    Article  CAS  PubMed  Google Scholar 

  • Yancey PH, Blake WR, Conley J (2002) Unusual organic osmolytes in deep-sea animals: adaptations to hydrostatic pressure and other perturbants. Comp Biochem Physiol A: Mol Integr Physiol 133:667–676

    Article  Google Scholar 

  • Yancey PH, Gerringer ME, Drazen JC, Rowden AA, Jamieson A (2014) Marine fish may be biochemically constrained from inhabiting the deepest ocean depths. Proc Natl Acad Sci USA 111:4461–4465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang WJ et al (2012) Complex spatial organization and flagellin composition of flagellar propeller from marine magnetotactic ovoid strain MO-1. J Mol Biol 416:558–570

    Article  CAS  PubMed  Google Scholar 

  • Zhang SD et al (2014a) Genome sequence of luminous piezophile Photobacterium phosphoreum ANT-2200. Genome Announc 2:e00096–14

    PubMed  PubMed Central  Google Scholar 

  • Zhang SD et al (2014b) Swimming behaviour and magnetotaxis function of the marine bacterium strain MO-1. Environ Microbiol Rep 6:14–20

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants SIDSSE-201307, SIDSSE-QN-201405, SIDSSE-QN-201406 and SIDSSE-QN-201408 from Sanya Institute of Deep-Sea Sciences and Engineering, the Strategic Priority Research Program grant XDB06010203 and International Partnership for Innovative Team Program (20140491526) from the Chinese Academy of Sciences, the NSFC 41506147 from National Natural Science Foundation of China, a grant for LIA-BioMNSL from Centre National de la Recherche Scientifique, the grant DY125-15-R-03 from China Ocean Mineral Resources R & D Association (COMRA) Special Foundation, the Grant NSFC 41306161 from the National Science Foundation of China and a grant from Mt. Tai Scholar Construction Engineering Special Foundation of Shandong Province. We acknowledge France Genomique for the support for this sequencing project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Fei Wu.

Additional information

Communicated by H. Atomi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4601 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, SD., Santini, CL., Zhang, WJ. et al. Genomic and physiological analysis reveals versatile metabolic capacity of deep-sea Photobacterium phosphoreum ANT-2200. Extremophiles 20, 301–310 (2016). https://doi.org/10.1007/s00792-016-0822-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-016-0822-1

Keywords

Navigation