Skip to main content

Advertisement

Log in

Structural basis for decreased affinity of Emodin binding to Val66-mutated human CK2α as determined by molecular dynamics

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Protein kinase CK2 (casein kinase 2) is a multifunctional serine/threonine kinase that is involved in a broad range of physiological events. The decreased affinity of Emodin binding to human CK2α resulting from single-point mutation of Val66 to Ala (V66A) has been demonstrated by experimental mutagenesis. Molecular dynamics (MD) simulations and energy analysis were performed on wild type (WT) and V66A mutant CK2α-Emodin complexes to investigate the subtle influences of amino acid replacement on the structure of the complex. The structure of CK2α and the orientation of Emodin undergo changes to different degrees in V66A mutant. The affected positions in CK2α are mainly distributed over the glycine-rich loop (G-loop), the α-helix and the loop located at the portion between G-loop and α-helix (C-loop). Based on the coupling among these segments, an allosteric mechanism among the C-loop, the G-loop and the deviated Emodin is proposed. Additionally, an estimated energy calculation and residue-based energy decomposition also indicate the lower instability of V66A mutant in contrast to WT, as well as the unfavorable energetic influences on critical residue contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in ellular decisions of life and death. Biochem J 369:1–15

    Article  CAS  Google Scholar 

  2. Duncan JS, Litchfield DW (2008) Too much of a good thing: The role of protein kinase CK2 in tumorigenesis and prospects for the therapeutic inhibition of CK2. Biochim Biophys Acta 1784:33–47

    CAS  Google Scholar 

  3. Meggio F, Pinna LA (2003) One-thousand-and one substrates of protein kinase CK2? FASEB J 17:349–368

    Article  CAS  Google Scholar 

  4. Ahmad KA, Wang G, Slaton J, Unger G, Ahmed K (2005) Targeting CK2 for cancer therapy. Anticancer Drugs 16:1037–1043

    Article  CAS  Google Scholar 

  5. Unger GM, Davis AT, Slaton JW, Ahmed K (2004) Protein kinase CK2 as regulator of cell survival: implications for cancer therapy. Curr Cancer Drug Targets 4:77–84

    Article  Google Scholar 

  6. Bibby AC, Litchfield DW (2005) The multiple personalities of the regulatory subunit of protein kinase CK2: CK2 dependent and CK2 independent roles reveal a secret identity for CK2 beta. Int J Biol Sci 1:67–79

    CAS  Google Scholar 

  7. Pinna LA (2002) Protein kinase CK2: a challenge to canons. J Cell Sci 115:3873–3878

    Article  CAS  Google Scholar 

  8. Mazzorana M, Pinna LA, Battistutta R (2008) A structural insight into CK2 inhibiton. Mol Cell Biochem 316:57–62

    Article  CAS  Google Scholar 

  9. Prudent R, Cochet C (2009) New protein kinase CK2 inhibitors: Jumping out of the catalytic box. Chem Biol 16:112–120

    Article  CAS  Google Scholar 

  10. Niefind K, Putter M, Guerra B, Issinger OG, Schomburg D (1999) GTP plus water mimic ATP in the active site of protein kinase CK2. Nat Struct Bio 6:1100–1103

    Article  CAS  Google Scholar 

  11. Battistutta R, Sarno S, De Moliner E, Papinutto E, Zanotti G, Pinna LA (2000) The replacement of ATP by the competitive inhibitor Emodin induces conformational modifications in the catalytic site of Protein kinase CK2. J Bio Chem 275:29618–29622

    Article  CAS  Google Scholar 

  12. Sarno S, Sali M, Battistutta R, Zanotti G, Pinna LA (2005) Features and potentials of ATP-site directed CK2 inhibitors. Biochim Biophys Acta 1754:263–270

    CAS  Google Scholar 

  13. Battistutta R, De Moliner E, Sarno S, Zanotti G, Pinna LA (2001) Structural features underlying selective inhibition of protein kinase CK2 by ATP site-directed tetrabromo-2-benzotriazole. Protein Sci 10:2200–2206

    Article  CAS  Google Scholar 

  14. De Moliner E, Moro S, Sarno S, Zagotto G, Zanotti G, Pinna LA, Battistutta R (2003) Inhibition of protein kianse CK2 by Anthraquinone-related compounds. J Biol Chem 278:1831–1836

    Article  Google Scholar 

  15. Battistutta R, Mazzorana M, Cendron L, Bortolato A, Sarno S, Kazimierczuk Z, Zanotti G, Moro S, Pinna LA (2007) The ATP-binding site of protein kinase CK2 holds a positive electrostatic area and conserved water molecules. Chembiochem 8:1804–1809

    Article  CAS  Google Scholar 

  16. Battistutta R, Mazzorana M, Sarno S, Kazimierczuk Z, Zanotti G, Pinna LA (2005) Inspecting the structure-activity relationship of protein kinase CK2 inhibitors derived from tetrabromo-benzimidazole. Chem Biol 12:1211–1219

    Article  CAS  Google Scholar 

  17. Chilin A, Battistutta R, Bortolato A, Cozza G, Zanatta S, Poletto G, Mazzorana M, Zagotto G, Uriarte E, Guiotto A, Pinna LA, Meggio F, Moro S (2008) Coumarin as attractive casein kinase 2 (CK2)inhibitor scaffold: an integrate approach to elucidate the putativebinding motif and explain structure-activity relationships. J Med Chem 51:752–759

    Article  CAS  Google Scholar 

  18. Sarno S, Moro S, Meggio F, Zagotto G, Dal Ben D, Ghiselline P, Battistutta R, Zanotti G, Pinna LA (2002) Toward the rational design of protein kinase casein kinase-2 inhibitors. Pharmacol Ther 93:159–168

    Article  CAS  Google Scholar 

  19. Pagano MA, Bain J, Kazimierczuk Z, Sarno Stefania S, Ruzzene M, Di Maira G, Elliott M, Orzeszko A, Cozza G, Meggio F, Pinna LA (2008) The selectivity of inhibitors of protein kinase CK2: an update. Biochem J 415:353–365

    Article  CAS  Google Scholar 

  20. Sarno S, Vaglio P, Meggio F, Ruzzene M, Davies SP, Donella Deana A, Shugar D, Pinna LA (2001) Selectivity of 4, 5, 6, 7-terabromobenzotriazole, an ATP-site-directed inhibitor of protein kinase CK2 (‘casein kinase-2’). FEBS Lett 496:44–48

    Article  CAS  Google Scholar 

  21. Zhang N, Jiang YJ, Zou JW, Zhuang SL, Jin HX, Yu QS (2007) Insights into unbinding mechanisms upon two mutations investigated by molecular dynamics study of GSK3β-Axin complex: Role of packing hydrophobic residues. Proteins 67:941–949

    Article  CAS  Google Scholar 

  22. Zhang N, Jiang YJ, Zou JW, Zhao WN, Yu QS (2009) Structural basis for the complete loss of GSK3β catalytic activity due to R96 mutation investigated by molecular dynamics study. Proteins 75:671–681

    Article  CAS  Google Scholar 

  23. Gohlke H, Case DA (2004) Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf. J Comput Chem 25:238–250

    Article  CAS  Google Scholar 

  24. LepšíK M, Kříž Z, Havlas Z (2004) Efficiency of a second generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations. Proteins 57:279–293

    Article  Google Scholar 

  25. Raaf J, Klopffleisch K, Issinger O-G, Niefind K (2008) The catalytic subunit of Human protein kinase CK2 structurally deviates from Its maize homologue in complex with the nucleotide competitive inhibitor Emodin. J Mol Biol 377:1–8

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian 03, Revision C.02. Gaussian Inc, Wallingford, CT

    Google Scholar 

  27. Besler BH, Merz KM, Kollman PA (1990) Atomic charges derived from semiempirical methods. J Comput Chem 11:431–439

    Article  CAS  Google Scholar 

  28. Fox T, Kollman PA (1998) Application of the RESP methodology in the parametrization of organic solvents. J Phys Chem B 102:8070–8079

    Article  CAS  Google Scholar 

  29. Case DA, Darden T, Cheathem TE III, Simmerling C, Wang JM, Duke RE, Luo R, Merz KM, Wang B, Pearlman DA, Croley M, Brozell S, Tsui V, Gohleke H, Mongan J, Hornak V, Cui GL, Beroza P, Schafmeister C, Caldwell JW, Ross WS, Kollman PA (2008) AMBER 10. University of California, San Francisco

    Google Scholar 

  30. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  31. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T (2003) A point-charge force field for molecular mechanics simulations of proteins. J Comput Chem 24:1999–2012

    Article  CAS  Google Scholar 

  32. Berendsen HJC, Postma JPM, van Gunsteren WF, Di Nola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  33. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints:molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  34. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log (N) method for Ewald sums in large systems. J Chem Phys 98:10089–10094

    Article  CAS  Google Scholar 

  35. Massova I, Kollman PA (2000) Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Persp Drug Discov Des 18:113–135

    Article  CAS  Google Scholar 

  36. Kollman PA, Massova I, Reyes C, Kuhn B, Shuanghong H, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE III (2000) Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Article  CAS  Google Scholar 

  37. Sitkoff D, Sharp KA, Honig B (1994) Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 98:1978–1988

    Article  CAS  Google Scholar 

  38. Wang W, Kollman PA (2001) Computational study of protein specificity: The molecular basis of HIV-1 protease drug resistance. Proc Natl Acad Sci USA 98:14937–14942

    Article  CAS  Google Scholar 

  39. Wang J, Morin P, Wang W, Kollman PA (2001) Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J Am Chem Soc 123:5221–5230

    Article  CAS  Google Scholar 

  40. Jayaram B, Sprous D, Beveridge DL (1998) Solvation free energy of biomacromolecules: parameters for a modified generalized born model consistent with the AMBER force field. J Phys Chem B 102:9571–9576

    Article  CAS  Google Scholar 

  41. Gohlke H, Kiel C, Case DA (2003) Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol 330:891–913

    Article  CAS  Google Scholar 

  42. Welburn JP, Tucker JA, Johnson T, Lindert L, Morgan M, Willis A, Nobe MEM, Endicott JA (2007) How Tyrosine 15 phosphorylation inhibits the activity of Cyclin-dependent kinase 2-cyclin A. J Biol Chem 282:3173–3181

    Article  CAS  Google Scholar 

  43. Aimes RT, Hemmer W, Taylor SS (2000) Serine-53 at the tip of the glycine-rich loop of cAMP-dependent protein kinase: role in catalysis, P-site specificity, and interaction with inhibitors. Biochem 39:8325–8332

    Article  CAS  Google Scholar 

  44. Grant B, Hemmer W, Tsigelny I, Adams JA, Taylor SS (1998) Kinetic analyses of mutations in the glycine-rich loop of cAMP-dependent protein kinase. Biochemistry 37:7708–7715

    Article  CAS  Google Scholar 

  45. Sun H, Jiang YJ, Yu QS, Luo CC, Zou JW (2008) Effect of mutation K85R on GSK-3β: Molecular dynamics simulation. Biochem Biophys Res Commun 377:962–965

    Article  CAS  Google Scholar 

  46. Jin HX, Wu TX, Jiang YJ, Zou JW, Zhuang SL, Mao X, Yu QS (2007) Role of phosphorylated Thr-197 in the catalytic subunit of cAMP-dependent protein kinase. J Mol Struct 805:9–15

    CAS  Google Scholar 

  47. Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J (2000) Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289:1938–1942

    Article  CAS  Google Scholar 

  48. Mohammadi M, McMahon G, Sun L, Tang C, Hirth P, Yeh BK, Hubbar SR, Schlessinger J (1997) Structures of the tyrosine kinase domain of fibroblastgrowth factor receptor in complex with inhibitors. Science 276:955–960

    Article  CAS  Google Scholar 

  49. Niefind K, Yde CW, Ermakova I, Issinger OG (2007) Evolved to be active: Sulfate ions define substrate recognition sites of CK2α and emphasise its exceptional role within the CMGC family of eukaryotic protein kinases. J Mol Biol 370:427–438

    Article  CAS  Google Scholar 

  50. Yde CW, Ermakova I, Niefind K (2005) Incling the purine base binding plane in protein kinase CK2 by exchanging the flanking side-chains generates a preference for ATP as a cosubstrate. J Mol Biol. 347:399–414

    Article  CAS  Google Scholar 

  51. Raaf J, Issinger OG, Niefind K (2009) First inactive conformation of CK2α, the catalytic subunit of protein kinase CK2. J Mol Biol 386:1212–1221

    Article  CAS  Google Scholar 

  52. De Moliner E, Brown NR, Johnson LN (2003) Alternative binding modes of an inhibitor to two different kinases. Eur J Biochem 270:3174–3181

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by China Postdoctoral Science Foundation funded project (No. 20090450271) and Beijing Natural Science Foundation (8072006). We acknowledge Professor David Case for the kind gift of AMBER 10 software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, N., Zhong, R. Structural basis for decreased affinity of Emodin binding to Val66-mutated human CK2α as determined by molecular dynamics. J Mol Model 16, 771–780 (2010). https://doi.org/10.1007/s00894-009-0582-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0582-2

Keywords

Navigation