Skip to main content

Advertisement

Log in

Generation of soluble oligomeric β-amyloid species via copper catalyzed oxidation with implications for Alzheimer’s disease: A DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A mechanism for the oxidation of a dimeric β-amyloid copper ion complex is proposed based on DFT calculations. It involves the Met35 residue, which is believed to be important in the neurotoxicity causing Alzheimer’s disease. Oxidation of Met35 is found to proceed readily with dioxygen when two Met35 residues are close to each other and the copper ion. This indicates that oxidants, such as hydrogen peroxide, are not necessary for oxidation of β-amyloid copper ion complexes. Understanding these processes could be pivotal in gaining more knowledge of this complex disease and for the development of therapeutic treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mattson MP (2004) Nature 430:631–639

    Article  CAS  Google Scholar 

  2. Hardy J, Selkoe DJ (2002) Science 297:353–356

    Article  CAS  Google Scholar 

  3. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Ann Neurol 46:860–866

    Article  CAS  Google Scholar 

  4. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ (2002) Selkoe DJ 416:535–539

    CAS  Google Scholar 

  5. Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR (1998) Neurol Sci 158:47–52

    Article  CAS  Google Scholar 

  6. Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein LE, Scarpa RC, Cuajungco MP, Gray DN, Lim J, Moir RD, Tanzi RE (1999) Biochemistry 38:7609–7616

    Article  CAS  Google Scholar 

  7. Cutler G, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC, Mattson MP (2004) Proc Natl Acad Sci 101:2070–2075

    Article  CAS  Google Scholar 

  8. Curtain CC, Ali F, Volitakis I, Cherny RA, Norton RS, Beyreuther K, Barrow CJ, Masters CL, Bush AI, Barnham KJ (2001) J Biol Chem 276:20466–20473

    Article  CAS  Google Scholar 

  9. Barnham KJ, Haeffner F, Ciccotosto GD, Curtain CC, Tew D, Mayros C, Beyreuther K, Carrington D, Masters CL, Cherny RA, Cappai RR, Bush AI (2004) FASEB J 18:1427–1429

    CAS  Google Scholar 

  10. Butterfield DA, Boyd-Kimball D (2005) Biochim Biophys Acta Proteins & Proteomics 1703:149–156

    Article  CAS  Google Scholar 

  11. Tickler AK, Smith DG, Ciccotosto GD, Tew DJ, Curtain CC, Carrington D, Masters CL, Bush AI, Cherny RA, Cappai R, Wade JD, Barnham KJ (2005) 280-13355–13363

  12. Ciccotosto GD, Barnham KJ, Cherny RA, Masters CL, Bush AI, Curtain CC, Cappai R, Tew D (2003) Lett Pep Sci 10:413–417

    Article  CAS  Google Scholar 

  13. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB,, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara M, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01. Gaussian Inc, Wallingford, CT

  14. Jaguar version 6.0 Schrodinger, LLC, Portland, OR, (2005)

  15. Pogocki D (2004) Chem Res Toxicol 17:325–329

    Article  CAS  Google Scholar 

  16. Guilloreau L, Damian L, Coppel Y, Mazarguil H, Winterhalter M, Faller P (2006) J Biol Inorg Chem 11:1024–1038

    Article  CAS  Google Scholar 

  17. Streltosov VA, Titmuss SJ, Epa VC, Barnham KJ, Masters CL, Varghese JN (2008) Biophys J 95:3447–3456

    Article  Google Scholar 

  18. Drew SC, Noble CJ, Masters CL, Hanson GR, Barnham KJ (2009) J Am Chem Soc 131:1195–1207

    Article  CAS  Google Scholar 

  19. A correction of 11.9 kcal mol−1 has been included for changing the standard state from 1 M in all species to 10−7 M in H3O+ and 55 M in H2O

  20. Dougherty DA (1996) Science 271:163–168

    Article  CAS  Google Scholar 

  21. Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JD, Hanson GR, Stokes KC, Leopold M, Multhaup G, Goldstein LE, Scarpa RC, Saunders AJ, Lim J, Moir RD, Glabe C, Bowden EF, Masters CL, Fairlie DP, Tanzi RE, Bush AI (1999) J Biol Chem 274:37111–37116

    Article  CAS  Google Scholar 

  22. Sanaullah, Wilson GS, Glass RS (1994) J Inorg Biochem 55:87–93

    Article  CAS  Google Scholar 

  23. Pogocki D, Serdiuk K, Schöneich C (2003) J Phys Chem A 107:7032–7042

    Article  CAS  Google Scholar 

  24. Huang LM, Rauk A (2004) J Phys Chem A 108:6222–6230

    Article  CAS  Google Scholar 

  25. Bonesi SM, Manet I, Freccero M, Fagnoni M, Albini A (2006) Chemistry - A european journal 12:4844–4857

    Article  CAS  Google Scholar 

  26. Egnaczyk GF, Greis KD, Stimson ER, Maggio JE (2001) Biochemistry 40:11706–11714

    Article  CAS  Google Scholar 

  27. Murakami K, Irie K, Ohigashi H, Hara H, Nagao M, Shimizu T, Shirasawa T (2005) J Am Chem Soc 127:15168–15174

    Article  CAS  Google Scholar 

  28. Murakami K, Hara H, Masuda Y, Ohigashi H, Irie K (2007) Chembiochem 8:2308–2314

    Article  CAS  Google Scholar 

  29. Foote CS, Peters JW (1971) J Am Chem Soc 93:3795–3796

    Article  CAS  Google Scholar 

  30. Correa PE, Riley DP (1985) J Org Chem 50:1787–1788

    Article  CAS  Google Scholar 

  31. Prigge ST, Eipper BA, Mains RE, Amzel LM (2004) Science 304:864–867

    Article  CAS  Google Scholar 

  32. Baciocchi E, Del Giacco T, Elisei F, Gerini MF, Guerra M, Lapi A, Liberali P (2003) J Am Chem Soc 125:16444–16454

    Article  CAS  Google Scholar 

  33. Chu J-W, Trout BL (2004) J Am Chem Soc 126:900–908

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tore Brinck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haeffner, F., Barnham, K.J., Bush, A.I. et al. Generation of soluble oligomeric β-amyloid species via copper catalyzed oxidation with implications for Alzheimer’s disease: A DFT study. J Mol Model 16, 1103–1108 (2010). https://doi.org/10.1007/s00894-009-0619-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0619-6

Keywords

Navigation