Skip to main content
Log in

On possible existence of pseudobinary mixed valence fluorides of Ag(I) / Ag(II): a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The DFT calculations performed within local density approximation disclose conceivable existence of two novel mixed–valence Ag(I)/Ag(II) fluorides, Ag2F3, i.e., Ag(I)Ag(II)F3 and Ag3F4, i.e., Ag(I)2Ag(II)F4. Ag2F3 is predicted to crystallize in three equally stable NaCuF3–, KAgF3–, or CuTeO3–type structures, while Ag3F4 should be isostructural to Na2CuF4. The calculated vibration-corrected energies of formation at 0 K of Ag2F3 and Ag3F4 (in their most stable polytypes) from binary fluorides are negative but small (respectively, –0.09 eV and –0.21 eV per formula unit). Formation of Ag3F5 (which, in fact, is a mixed valence Ag(I)/Ag(III) salt) from binary fluorides is much less likely, since the energy of formation is quite positive of about a quarter eV. The predicted volumes per formula unit for all forms of Ag2F3 are larger and that for K2CuF4–type Ag3F4 is smaller than the sum of volumes of the corresponding binary fluorides; Ag2F3 should not form at high pressure conditions due to a decomposition to the binary constituents. Ag2F3 and Ag3F4 should exhibit genuine mixed– and not intermediate–valence with quite different coordination spheres of Ag(I) and Ag(II). Nevertheless, they should not be electric insulators. Ag2F3 is predicted to be a metallic ferrimagnet with a magnetic superexchange coupling constant, J, of –2 meV while Ag3F4 should be a metallic ferromagnet with J of +52 meV. Since Ag2F3 and Ag3F4 are at the verge of thermodynamic stability, a handful of exothermic reactions have been proposed which could yield these as yet unknown compounds.

Novel mixed valence Ag(I)/Ag(II) fluorides, such as Ag(I)2Ag(II)F4 shown here, are predicted from DFT calculations

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fe3O4 mentioned here is actually a more complex case, with Fe(III) cations at the A site of the spinel and both Fe(II) and Fe(III) cations at the B site

  2. Robin MB, Day P (1967) Adv inorg chem radiochem 10:247–422

    Article  CAS  Google Scholar 

  3. Marcus RA (1993) Angew Chem Int Ed Engl 32:1111-1121

    Google Scholar 

  4. Barbara PF, Meyer TJ, Ratner MA (1996) J Phys Chem 100: 13148-13168

    Google Scholar 

  5. Grochala W, Hoffman R (2000) J Phys Chem A 104:9740-9749 and references therein

    Google Scholar 

  6. Bednorz JG, Müller KA (1986) Z Phys B Con Mat 64:189–193

    Article  CAS  Google Scholar 

  7. Williams A (1989) J Phys Condens Mat 1:2569–2574

    Article  CAS  Google Scholar 

  8. Yoshida H, Muraoka Y, Sörgel T, Jansen M, Hiroi Z (2006) Phys Rev B 73:020408(R)-1 to -4

  9. Schreyer M, Jansen M (2002) Angew Chem Int Ed Engl 41:643–646

    Article  CAS  Google Scholar 

  10. Wang QM, Lee HK, Mak TCW (2002) New J Chem 26:513–515

    Article  Google Scholar 

  11. Leung PC, Aubke F (1978) Inorg Chem 17:1765–1772

    Article  CAS  Google Scholar 

  12. Michałowski T et al. (2010) 16th European Symposium on Fluorine Chemistry, Ljubljana Slovenia

  13. Mazej Z (2010) Pacifichem – The International Chemical Congress of Pacific Basin Societies, Honolulu USA

  14. Shen CP, Žemva B, Lucier GM, Graudejus O, Allman JA, Bartlett N (1999) Inorg Chem 38:4570–4577

    Article  CAS  Google Scholar 

  15. McMillan JA (1960) J Inorg Nucl Chem 13:28–31

    Article  CAS  Google Scholar 

  16. Robin MB, Andres K, Geballe TH, Kuebler NA, McWhan DB (1966) Phys Rev Lett 17:917–919

    Article  CAS  Google Scholar 

  17. Standke B, Jansen M (2003) Angew Chem Int Ed Engl 25:77–78

    Article  Google Scholar 

  18. Žemva B et al. (1991) J Am Chem Soc 113:4192–4198

    Article  Google Scholar 

  19. Kraus M, Müller M, Fischer R, Schmidt R, Koller D, Müller BG (2000) J Fluorine Chem 101:165–171

    Article  CAS  Google Scholar 

  20. Grochala W, Hoffmann R (2001) Angew Chem Int Ed Engl 40:2743–2781

    Article  Google Scholar 

  21. Grochala W, Egdell RG, Edwards PP, Mazej Z, Žemva B (2003) Chem Phys 4:997–1001

    CAS  Google Scholar 

  22. Lucier GM, Münzenberg J, Casteel WJ, Bartlett N (1995) Inorg Chem 34:2692–2698

    Article  CAS  Google Scholar 

  23. Grochala W, Edwards PP (2003) Phys Status Solidi B 240:R11–R14

    Article  CAS  Google Scholar 

  24. Grochala W, Porch A, Edwards PP (2004) Solid State Commun 130:137–142

    Article  CAS  Google Scholar 

  25. Grochala W (2005) J Mol Model 11:323–329

    Article  CAS  Google Scholar 

  26. Grochala W (2009) J Mater Chem 19:6949–6968

    Article  CAS  Google Scholar 

  27. Tokura Y, Tagaki H, Uchida S (1989) Nature 337:345–347

    Article  CAS  Google Scholar 

  28. Grochala W, Feng J, Hoffmann R, Ashcroft NW (2006) Angew Chem Int Ed Engl 46:3620–3642

    Article  Google Scholar 

  29. Blöchl PE (1994) Phys Rev B 50:17953–17979

    Article  Google Scholar 

  30. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  31. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  32. Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  33. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  34. Malinowski PJ, Derzsi M, Gaweł B, Łasocha W, Jagličić Z, Mazej Z, Grochala W (2010) Angew Chem Int Edit 49:1683–1686

    CAS  Google Scholar 

  35. Derzsi M, Dymkowski K, Grochala W (2010) Inorg Chem 49:2735–2742

    Article  CAS  Google Scholar 

  36. Romiszewski J, Stolarczyk L, Grochala W (2007) J Phys Condens Matter 19:116206-1 to -13

    Google Scholar 

  37. Mazej Z et al. (2009) Cryst Eng Comm 11:1702–1710

    CAS  Google Scholar 

  38. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505–1509

    Article  CAS  Google Scholar 

  39. McLain SE et al. (2006) Nat Mater 5:561–566

    Article  CAS  Google Scholar 

  40. Kurzydłowski D et al. (2010) 16th European Symposium on Fluorine Chemistry, Ljubljana Slovenia

  41. Hidaka M, Inoue K, Yamada I, Walker PJ (1983) Physica B + C 121:343–350

    CAS  Google Scholar 

  42. Kurzydłowski D et al. (2010) Eur J Inorg Chem 19:2919–2925

    Article  Google Scholar 

  43. Babel D (1965) Z Anorg Allg Chem 336:200–206

    Article  CAS  Google Scholar 

  44. Buttner RH, Maslen EN, Spadaccini N (1990) Acta Crystallogr B 46:131–138

    Article  Google Scholar 

  45. Hidaka M, Eguchi T, Yamada I (1998) J Phys Soc Jpn 67:2488–2494

    Article  CAS  Google Scholar 

  46. Lindqvist O (1971) Acta Chem Scand 25:740–787

    Article  CAS  Google Scholar 

  47. Kaiser V, Otto M, Binder F, Babel D (1990) Z Anorg Allg Chem 585:93–104

    Article  CAS  Google Scholar 

  48. Tong J, Lee C, Whangbo MH, Kremer RK, Simon A Köhler J (2010) Z Kristallogr 12:680–684

    CAS  Google Scholar 

  49. Ghedira M, Anne M, Chenavas J, Marezio M, Sayetat F (1986) J Phys C 19:6489–6503

    Article  CAS  Google Scholar 

  50. Müllerbuschbaum H, Wollschlager W (1975) Z Anorg Allg Chem 414:76–80

    Article  Google Scholar 

  51. Bachmann B, Müller BG (1991) Z Anorg Allg Chem 597:9–18

    Article  CAS  Google Scholar 

  52. Müller BG (1982) Z Anorg Allg Chem 491:245–252

    Article  Google Scholar 

  53. Kaiser V, Babel D (1990) Acta Crystallogr A 46:367–368

    Google Scholar 

  54. Berastegui P, Hull S, Eriksson SG (2010) J Solid State Chem 183:373–378

    Article  CAS  Google Scholar 

  55. Hoppe R, Homann R (1966) Naturwiss 53:501–501

    Article  CAS  Google Scholar 

  56. Kurzydłowski D, Grochala W (2008) Chem Commun 1073-1075

  57. Kurzydłowski D, Grochala W (2008) Z Anorg Allg Chem 634:1082–1086

    Article  Google Scholar 

  58. Hoppe R (1957) Z Anorg Allg Chem 292:28–33

    Article  CAS  Google Scholar 

  59. See Supplementary Information for Ref. [36] for DFT calculations

  60. King G, Woodward PM (2010) J Mater Chem 20:5785–5796

    Article  CAS  Google Scholar 

  61. Fischer P, Schwarzenbach D, Rietveld HM (1971) J Phys Chem Solids 32:543–550

    Article  CAS  Google Scholar 

  62. Jesih A et al. (1990) Z Anorg Allg Chem 588:77–83

    Article  CAS  Google Scholar 

  63. The P21/c cell is pseudo-orthorhombic (β = 90.01o) and it may be symmetrized to Cmmm; this comes with energy bill of +0.02 eV per FU

  64. Grochala W (2006) Phys Statud Solidi B 243:R81–R83

    Article  CAS  Google Scholar 

  65. Mitrofanov VY, Nikiforov AE, Shashkin SY (1997) Solid State Commun 104:499–504

    Article  CAS  Google Scholar 

  66. Feng J, Hennig RG, Ashcroft NW, Hoffmann R (2008) Nature 451:445–448

    Article  CAS  Google Scholar 

  67. Bartlett N, Yeh S, Kourtakis K, Mallouk TE (1984) J Fluorine Chem 26:97–116

    Article  CAS  Google Scholar 

  68. Shen CS, Hagiwara R, Mallouk TE, Bartlett N (1994) In: Inorganic Fluorine Chemistry Toward the 21st Century. American Chemical Society, Washington DC, p 26

    Book  Google Scholar 

  69. Jenkins HDB, Glasser L (2003) Inorg Chem 42:8702–8708

    Article  CAS  Google Scholar 

  70. Derzsi M, Leszczyński P, Grochala W (2010) unpublished data. Grochala W et al. (2010) 16th European Symposium on Fluorine Chemistry, Ljubljana Slovenia

  71. Jaroń T, Grochala W (2008) Phys Status Solidi R 2:71–73

    Article  Google Scholar 

Download references

Acknowledgments

The project ‘Quest for superconductivity in crystal-engineered higher fluorides of silver’ is operated within the Foundation for Polish Science ‘TEAM’ Program co-financed by the EU European Regional Development Fund. Calculations have been performed at Interdisciplinary Centre for Mathematical and Computational Modelling (ICM) supercomputers. WG is grateful to ICM and Faculty of Chemistry, University of Warsaw, for financial sustenance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Grochala.

Additional information

This work is dedicated to eminent crystallographer and good friend, Michał Ksawery Cyrański, on his birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grochala, W. On possible existence of pseudobinary mixed valence fluorides of Ag(I) / Ag(II): a DFT study. J Mol Model 17, 2237–2248 (2011). https://doi.org/10.1007/s00894-010-0949-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0949-4

Keywords

Navigation