Skip to main content
Log in

Theoretical mechanistic study of the reaction of the methylidyne radical with methylacetylene

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A detailed doublet potential energy surface for the reaction of CH with CH3CCH is investigated at the B3LYP/6-311G(d,p) and G3B3 (single-point) levels. Various possible reaction pathways are probed. It is shown that the reaction is initiated by the addition of CH to the terminal C atom of CH3CCH, forming CH3CCHCH 1 (1a,1b). Starting from 1 (1a,1b), the most feasible pathway is the ring closure of 1a to CH3–cCCHCH 2 followed by dissociation to P 3 (CH3–cCCCH+H), or a 2,3 H shift in 1a to form CH3CHCCH 3 followed by C–H bond cleavage to form P 5 (CH2CHCCH+H), or a 1,2 H-shift in 1 (1a, 1b) to form CH3CCCH2 4 followed by C–H bond fission to form P 6 (CH2CCCH2+H). Much less competitively, 1 (1a,1b) can undergo 3,4 H shift to form CH2CHCHCH 5. Subsequently, 5 can undergo either C–H bond cleavage to form P 5 (CH2CHCCH+H) or C–C bond cleavage to generate P 7 (C2H2+C2H3). Our calculated results may represent the first mechanistic study of the CH + CH3CCH reaction, and may thus lead to a deeper understanding of the title reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5a–d
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Sanders WA, Lin MC (1986) In chemical kinetic of small organic radical, vol III. CRC, Boca Raton

  2. Miller JA, Kee RJ, Westbrook CK (1990) Annu Rev Phys Chem 41:345–387

    Article  CAS  Google Scholar 

  3. Lindqvist M, Sandqvist A, Winnberg A, Johansson L, Nyman LA (1995) Astron Astrophys Suppl Ser 113:257–263

    CAS  Google Scholar 

  4. Canosa A, Sims IR, Travers D, Smith IWM, Rowe BR (1997) Astron Astrophys 323:644–651

    CAS  Google Scholar 

  5. Amin MY, El-Nawawy MS (1996) Earth Moon Planet 75:25–39

    Article  CAS  Google Scholar 

  6. Brownsword RA, Sims IR, Smith IWM (1997) Astrophys J 485:195–201

    Article  CAS  Google Scholar 

  7. Herzberg G, Johns JWC (1969) Astrophys J 58:399–406

    Article  Google Scholar 

  8. Bernath PF (1987) J Chem Phys 86:4838–4842

    Article  CAS  Google Scholar 

  9. Zachwieja M (1995) J Mol Spectrosc 170:285–289

    Article  CAS  Google Scholar 

  10. Kalemos A, Mavridis A, Metropoulos A (1999) J Chem Phys 111:9536–9548

    Article  CAS  Google Scholar 

  11. Hirata S, Yanai T, Jong WA, Nakajima T, Hirao K (2004) J Chem Phys 120:3297–3310

    Article  CAS  Google Scholar 

  12. Vázquez GJ, Amero JM, Liebermann HP, Buenker RJ, Lefebvre-Brion H (2007) J Chem Phys 126:164302–164315

    Article  Google Scholar 

  13. Ikejiri K, Ohoyama H, Nagamachi Y, Kasai T (2005) Chem Phys Lett 401:465–469

    Article  CAS  Google Scholar 

  14. Manaa MR, Yarkony DR (1991) J Chem Phys 95:1808–1817

    Article  CAS  Google Scholar 

  15. Seideman T, Walch SP (1994) J Chem Phys 101:3656–3662

    Article  CAS  Google Scholar 

  16. Seideman T (1994) J Chem Phys 101:3662–3671

    Article  CAS  Google Scholar 

  17. Berman MR, Tsuchiya T, Gregušová A, Perera SA, Bartlett RJ (2007) J Phys Chem A 111:6894–6899

    Article  CAS  Google Scholar 

  18. Bergeat A, Calvo T, Dorthe G, Loison JC (1999) J Phys Chem A 103:6360–6365

    Article  CAS  Google Scholar 

  19. Jursic BS (1998) J Phys Chem A 102:9255–9260

    Article  CAS  Google Scholar 

  20. Fleurat-Lessard P, Rayez JC, Bergeat A, Loison AC (2002) Chem Phys 279:87–99

    Article  CAS  Google Scholar 

  21. Daugey N, Caubet P, Retail B, Costes M, Bergeat A, Dorthe G (2005) Phys Chem Chem Phys 7:2921–2927

    Article  CAS  Google Scholar 

  22. Loison JC, Bergeat A, Caralp F, Hannachi Y (2006) J Phys Chem A 110:13500–13506

    Article  CAS  Google Scholar 

  23. Mckee K, Blitz MA, Hughes KJ, Pilliing MJ, Qian HB, Taylor A, Seakins PW (2003) J Phys Chem A 107:5710–5716

    Article  CAS  Google Scholar 

  24. Galland N, Caralp F, Hannachi Y, Bergeat A, Loison JC (2003) J Phys Chem A 107:5419–5426

    Article  CAS  Google Scholar 

  25. Loison JC, Bergeat A (2009) Phys Chem Chem Phys 11:655–664

    Article  CAS  Google Scholar 

  26. Goulay F, Trevitt AJ, Meloni G, Selby TM, Osborn DL, Taatjes CA, Vereecken L, Leone SR (2009) J Am Chem Soc 131:993–005

    Article  CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB et al (2004) Gaussian 03, revision D.02. Gaussian Inc., Wallingford

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (nos. 20773048, 21073075)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-ri Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Liu, Hl., Yang, GH. et al. Theoretical mechanistic study of the reaction of the methylidyne radical with methylacetylene. J Mol Model 17, 3173–3181 (2011). https://doi.org/10.1007/s00894-011-0979-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-0979-6

Keywords

Navigation