Skip to main content
Log in

A joint experimental and theoretical investigation of kinetics and mechanistic study in a synthesis reaction between triphenylphosphine and dialkyl acetylenedicarboxylates in the presence of benzhydrazide

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Stable crystalline phosphorus ylides were obtained in excellent yields from the 1:1:1 addition reaction between triphenylphosphine (TPP) and dialkyl acetylenedicarboxylates, in the presence of NH-acids, such as benzhydrazide. To determine the kinetic parameters of the reactions, they were monitored by UV spectrophotometery. The second order fits were automatically drawn and the values of the second order rate constant (k2) were calculated using standard equations within the program. At the temperature range studied the dependence of the second order rate constant (Ln k2) on reciprocal temperature was compatible with Arrhenius equation. This provided the relevant plots to calculate the activation energy of all reactions. Furthermore, useful information were obtained from studies of the effect of solvent, structure of reactants (different alkyl groups within the dialkyl acetylenedicarboxylates) and also concentration of reactants on the rate of reactions. On the basis of experimental data the proposed mechanism was confirmed according to the obtained results and a steady state approximation and the first step (k2) and third (k3) steps of the reactions were recognized as the rate determining steps, respectively. In addition, three speculative proposed mechanisms were theoretically investigated using quantum mechanical calculation. The results, arising from the second and third speculative mechanisms, were far from the experimental data. Nevertheless, there was a good agreement between the theoretical kinetic data, emerge from the first speculative mechanism, and experimental kinetic data of proposed mechanism.

Kinetics and mechanistic study in a synthesis reaction between triphenylphosphine (1) and dialkyl acetylenedicarboxylates (2) in the presence of benzhydrazide (3) Theoretical and Experimental investigation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Laszo P (1995) Organic reaction, simplicity and logic. Wiley, New York

    Google Scholar 

  2. Johnson AW (1966) Ylied chemistry. Academic, London

    Google Scholar 

  3. Cadogan JIG (1979) Organophosphorus reagents in organic synthesis. Academic, New York

    Google Scholar 

  4. Engel R (1988) Synthesis of carbon-phosphors bonds. CRC, Boca Raton

    Google Scholar 

  5. Hudson HR (1990) In: Hartley FR (ed) The chemistry of organophosphorus compounds; primary, secondary, and tertiary phosphates and heterocyclic organophosphorus (3) compounds. Wiley, New York, pp 382–472

    Google Scholar 

  6. Corbridge DEC (1995) Phosphorus: an outline of chemistry, biochemistry and uses. Elsevier, Amsterdam

    Google Scholar 

  7. Pietrusiewiz KM, Zablocka M (1994) Chem Rev 94:1375–1411

    Article  Google Scholar 

  8. Shen Y (1998) Acc Chem Res 31:584–592

    Article  CAS  Google Scholar 

  9. Gilchrist TL (1985) Heterocyclic Chemistry. Wiley, NewYork

    Google Scholar 

  10. Yavari I, Alizadeh A, Anary-Abbasinejad M (2002) Tetrahedron Lett 43:4503–4505

    Article  CAS  Google Scholar 

  11. Yavari I, Adib M, Hojabri L (2002) Tetrahedron 58:7213–7219

    Article  CAS  Google Scholar 

  12. Yavari I, Alizadeh A, Anary-Abbasinejad M (2002) Tetrahedron Lett 43:9449–9452

    Article  CAS  Google Scholar 

  13. Yavari I, Adib M, Jahani-Moghaddam F, Sayahi MH (2002) Phosphorus Sulfur Silicon Relat Elem 177:545–553

    Article  CAS  Google Scholar 

  14. Ramazani A, Shajari N, Gouranlou F (2001) Phosphorus Sulfur Silicon Relat Elem 174:223–227

    Article  CAS  Google Scholar 

  15. Maghsoodlou MT, Habibi-Khorassani SM, Heydari R, Rostami-Charati F (2006) J Chem Res 364-365

  16. Maghsoodlou MT, Rostami-Charati F, Habibi-Khorassani SM, Khosroshahrodi M, Makha M (2008) Iran J Chem Chem Eng 27:105–113

    CAS  Google Scholar 

  17. Maghsoodlou MT, Heydari R, Hazeri N, Habibi-Khorassani SM, Nassiri M, Ghasemzadeh M, Salehzadeh J, Gharechaei Z (2009) Heteroatom Chem 20:240–245

    Article  CAS  Google Scholar 

  18. Maghsoodlou MT, Hazeri N, Habibi-Khorassani SM, Heydari R, Marandi G, Lashkari M, Bagherpour K, Gharechaei Z (2010) Monatsh Chem 141:351–356

    Article  CAS  Google Scholar 

  19. Aminkhani A, Kabiri R, Habibi-Khorassani SM, Heydari R, Maghsoodlou MT, Marandi G, Lashkari M, Rostamizadeh M (2009) J Sulfur Chem 30:500–506

    Article  CAS  Google Scholar 

  20. Habibi-Khorassani SM, Maghsoodlou MT, Zakarianejad M, Nassiri M, Kazemian MA, Karimi P (2008) Heteroatom Chem 19:723–732

    Article  CAS  Google Scholar 

  21. Ortiz de Montellano PR (1995) Biochimie 77:581–593

    Article  CAS  Google Scholar 

  22. DePillis GD, Wariishi H, Gold MH, Ortiz de Montellano PR (1990) Arch Biochem Biophys 280:217–223

    Article  CAS  Google Scholar 

  23. Harris RZ, Wariishi H, Gold MH, Ortiz de Montellano PR (1991) J Biol Chem 266:8751–8758

    CAS  Google Scholar 

  24. Samokyszyn VM, Ortiz de Montellano PR (1991) Biochemistry 30:11646–11653

    Article  CAS  Google Scholar 

  25. Burner U, Obinger C, Paumann M, Furtmuller PG, Kettle AJ (1999) J Biol Chem 274:9494–9502

    Article  CAS  Google Scholar 

  26. Wengenack NL, Rusnak F (2001) Biochemistry 40:8990–8996

    Article  CAS  Google Scholar 

  27. Torffvit O, Thysell H, Nassberger L (1994) Hum Exp Toxicol 13:563–567

    Article  CAS  Google Scholar 

  28. Reilly CA, Aust SD (1997) Chem Res Toxicol 10:328–334

    Article  CAS  Google Scholar 

  29. Silverman RB (1988) Mechanism-based enzyme inactivation: Chemistry and enzymology, vol. 1. CRC, Boca Raton

    Google Scholar 

  30. Furtmuller PG, Burner U, Regelsberger G (2000) Biochemistry 39:15578–15584

    Article  CAS  Google Scholar 

  31. Nielsen OJ, Sehsted J, Langer S, Ljungström E, Wängberg I (1995) Chem Phys Lett 238:359–364

    Article  Google Scholar 

  32. Langer S, Ljungström E, Ellemann T, Sehsted J, Nielsen OJ (1995) Chem Phys Lett 53:240–255

    Google Scholar 

  33. Petersson GA, Al-Laham MA (1991) J Chem Phys 94:6081–6090

    Article  CAS  Google Scholar 

  34. Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) J Chem Phys 89:2193–2218

    Article  CAS  Google Scholar 

  35. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  36. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  37. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors sincerely thank the University of Sistan & Baluchestan for providing financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayyed Mostafa Habibi-Khorassani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazemian, M.A., Habibi-Khorassani, S.M., Ebrahimi, A. et al. A joint experimental and theoretical investigation of kinetics and mechanistic study in a synthesis reaction between triphenylphosphine and dialkyl acetylenedicarboxylates in the presence of benzhydrazide. J Mol Model 18, 5075–5088 (2012). https://doi.org/10.1007/s00894-012-1503-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1503-3

Keywords

Navigation