Skip to main content
Log in

Theoretical study (CC2, DFT and PCM) of charge transfer complexes between antithyroid thioamides and TCNE: electronic CT transitions

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A set of representative DFT and wavefunction based theoretical approaches have been used to study ionization potentials and, predominantly, electronic charge transfer transitions in the complexes formed between TCNE as an electron acceptor and both mono and bicyclic thioamides as donors. The mentioned thioamides are of pharmacological importance due to their efficient antithyroid activity. Within a few kcal mol-1 we have found six stable conformers for complexes with each of benzothioamides and four conformers for each of monocyclic thioamides. Present theoretical study satisfactorily shows that there is a good correspondence between the CC2/Def2-TZVPP calculated excitation energies for complexes in vacuum supplemented by the DFT solvent shifts and experiment. Present theoretical study contributes to deeper understanding of the electronic nature of the ground and excited states of the complexes with antithyroid activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Nakamura H, Noh JY, Itoh K, Fukata S, Miyauchi A, Hamada N, Gu WGJTA (2007) Comparison of methimazole and propylthiouracil in patients with hyperthyroidism caused by Graves’ disease. J Clin Endocrinol Metab 92(6):2157–2162. doi:10.1210/Jc.2006-2135

    Article  CAS  Google Scholar 

  2. Corban GJ, Hadjikakou SK, Hadjiliadis N, Kubicki M, Tiekink ERT, Butler IS, Drougas E, Kosmas AM (2005) Synthesis, structural characterization, and computational studies of novel diiodine adducts with the heterocyclic thioamides N-methylbenzothiazole-2-thione and benzimidazole-2-thione: implications with the mechanism of action of antithyroid drugs. Inorg Chem 44(23):8617–8627. doi:10.1021/Ic0484396

    Article  CAS  Google Scholar 

  3. Corban GJ, Hadjikakou SK, Tsipis AC, Kubicki M, Bakas T, Hadjiliadis N (2011) Inhibition of peroxidase-catalyzed iodination by thioamides: experimental and theoretical study of the antithyroid activity of thioamides. New J Chem 35(1):213–224. doi:10.1039/C0nj00626b

    Article  CAS  Google Scholar 

  4. Cooper DS (2005) Drug therapy: antithyroid drugs. N Engl J Med 352(9):905–917. doi:10.1056/Nejmra042972

    Article  CAS  Google Scholar 

  5. Crescioli C, Cosmi L, Borgogni E, Santarlasci V, Gelmini S, Sottili M, Sarchielli E, Mazzinghi B, Francalanci M, Pezzatini A, Perigli G, Vannelli GB, Annunziato F, Serio M (2007) Methimazole inhibits CXC chemokine ligand 10 secretion in human thyrocytes. J Endocrinol 195(1):145–155. doi:10.1677/Joe-07-0240

    Article  CAS  Google Scholar 

  6. Chernov’yants MS, Dolinkin AO (2010) Heteroaromatic thioamides: structure and stability of charge transfer complexes with iodine, antithyroid activity. J Struct Chem 51(6):1176–1190. doi:10.1007/s10947-010-0178-9

    Article  Google Scholar 

  7. Hadjikakou SK, Hadjiliadis N (2006) Interaction of thioamides, selenoamides, and amides with diiodine. Bioinorg Chem Appl. doi:10.1155/Bca/2006/60291

    Google Scholar 

  8. Little LH, Ottewill RH (1962) Studies on the infrared spectra of a mercaptotriazole and mercaptothiazoline and their adsorption on silver iodine. Can J Chem 40(11):2110–2121. doi:10.1139/v62-324

    Article  CAS  Google Scholar 

  9. Esseffar M, Bouab W, Lamsabhi A, Abboud JLM, Notario R, Yanez M (2000) An experimental and theoretical study on some thiocarbonyl-I-2 molecular complexes. J Am Chem Soc 122(10):2300–2308. doi:10.1021/Ja983268n

    Article  CAS  Google Scholar 

  10. Freeman F, Ziller JW, Po HN, Keindl MC (1988) Reactions of imidazole-2-thiones with molecular iodine and the structures of two crystalline modifications of the 1:1 1,3-dimethylimidazole-2-thione-diiodine charge-transfer complex (C5H8I2N2S). J Am Chem Soc 110(8):2586–2591. doi:10.1021/ja00216a035

    Article  CAS  Google Scholar 

  11. Zitouni GT, Sezgin S (1998) Acta pharm Turc 40:151–154

    Google Scholar 

  12. Rabie UM, Abou-El-Wafa MHM, Nassar H (2011) In vitro simulation of the chemical scenario of the action of an anti-thyroid drug: charge transfer interaction of thiazolidine-2-thione with iodine. Spectrochim Acta A 78(1):512–517. doi:10.1016/j.saa.2010.11.019

    Article  Google Scholar 

  13. Mohamed TA, Mustafa AM, Zoghaib WM, Afifi MS, Farag RS, Badr Y (2008) Reinvestigation of benzothiazoline-2-thione and 2-mercaptobenzothiazole tautomers: conformational stability, barriers to internal rotation and DFT calculations. J Mol Struct THEOCHEM 868(1–3):27–36. doi:10.1016/j.theochem.2008.07.037

    Article  CAS  Google Scholar 

  14. Batjargal S, Wang YJ, Goldberg JM, Wissner RF, Petersson EJ (2012) Native chemical ligation of thioamide-containing peptides: development and application to the synthesis of labeled alpha-synuclein for misfolding studies. J Am Chem Soc 134(22):9172–9182. doi:10.1021/Ja2113245

    Article  CAS  Google Scholar 

  15. Chernov’yants MS, Khohlov EV, Bondarenko GI, Burykin IV (2011) Estimation of sigma- and pi-donor properties of heterocyclic thioamides by spectroscopic and magnetic resonance methods. Spectrochim Acta A 81(1):640–644. doi:10.1016/j.saa.2011.06.067

    Article  Google Scholar 

  16. Kysel O, Budzak S, Medved M, Mach P (2008) MP2, DFT-D, and PCM study of the HMB-TCNE complex: thermodynamics, electric properties, and solvent effects. Int J Quantum Chem 108(9):1533–1545. doi:10.1002/Qua.21685

    Article  CAS  Google Scholar 

  17. Mach P, Budzak S, Medved M, Kysel O (2012). Theoretical analysis of charge-transfer electronic spectra of methylated benzenes-TCNE complexes including solvent effects: approaching experiment. Theoretical Chemistry Accounts 131 (9). doi:10.1007/S00214-012-1268-X

  18. Mach P, Juhasz G, Kysel’ O (2013) Theoretical study of electronic absorptions in aminopyridines - TCNE CT complexes by quantum chemical methods, including solvent. J Mol Model 19(11):4639–4650. doi:10.1007/s00894-012-1437-9

    Article  CAS  Google Scholar 

  19. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799. doi:10.1002/Jcc.20495

    Article  CAS  Google Scholar 

  20. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32(7):1456–1465. doi:10.1002/Jcc.21759

    Article  CAS  Google Scholar 

  21. Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003). Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids. Physical Review Letters 91 (14). doi:10.1103/Physrevlett.91.146401

  22. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120(1–3):215–241. doi:10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  23. Grimme S (2003) Improved second-order møller–plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies. J Chem Phys 118(20):9095–9102. doi:10.1063/1.1569242

    Article  CAS  Google Scholar 

  24. Pitonak M, Neogrady P, Cerny J, Grimme S, Hobza P (2009) Scaled MP3 Non-covalent interaction energies agree closely with accurate CCSD(T) benchmark data. ChemPhysChem 10(1):282–289. doi:10.1002/cphc.200800718

    Article  CAS  Google Scholar 

  25. Sedlak R, Riley KE, Rezac J, Pitonak M, Hobza P (2013) MP2.5 and MP2. X: approaching CCSD(T) quality description of noncovalent interaction at the cost of a single CCSD iteration. ChemPhysChem 14(4):698–707. doi:10.1002/cphc.201200850

    Article  CAS  Google Scholar 

  26. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design an assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305

    Article  CAS  Google Scholar 

  27. Tozer DJ, Handy NC (1998) Improving virtual kohn-sham orbitals and eigenvalues: application to excitation energies and static polarizabilities. J Chem Phys 109(23):10180–10189. doi:10.1063/1.477711

    Article  CAS  Google Scholar 

  28. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57. doi:10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  29. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–20

    Article  CAS  Google Scholar 

  30. Charaf-Eddin A, Planchat A, Mennucci B, Adamo C, Jacquemin D (2013) Choosing a functional for computing absorption and fluorescence band shapes with TD-DFT. J Chem Theory Comput 9(6):2749–2760. doi:10.1021/Ct4000795

    Article  CAS  Google Scholar 

  31. Laurent AD, Jacquemin D (2013) TD-DFT benchmarks: a review. Int J Quantum Chem 113(17):2019–2039. doi:10.1002/Qua.24438

    Article  CAS  Google Scholar 

  32. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) Long-range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 115:3540–3544

    Article  CAS  Google Scholar 

  33. Vydrov OA, Scuseria GE (2006) Assessment of a long-range corrected hybrid functional. J Chem Phys 125(23):234109

    Article  Google Scholar 

  34. Koopmans T (1933) Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica 1(1–6):104–113. doi:10.1016/S0031-8914(34)90011-2

    CAS  Google Scholar 

  35. von Niessen W, Schirmer J, Cederbaum LS (1984) Computational methods for the one-particle green’s function. Comput Phys Rep 1(2):57–125. doi:10.1016/0167-7977(84)90002-9

    Article  Google Scholar 

  36. Cederbaum LS, Domcke W (1977) Theoretical aspects of ionization potentials and photoelectron spectroscopy: a many − body approach. Adv Chem Phys 36:205

    Article  CAS  Google Scholar 

  37. Feller D (1992) Application of systematic sequences of wave-functions to the water dimer. J Chem Phys 96(8):6104–6114. doi:10.1063/1.462652

    Article  CAS  Google Scholar 

  38. Feller D (1993) The Use of systematic sequences of wave-functions for estimating the complete basis Set, full configuration-interaction limit in water. J Chem Phys 98(9):7059–7071. doi:10.1063/1.464749

    Article  CAS  Google Scholar 

  39. Helgaker T, Klopper W, Koch H, Noga J (1997) Basis-set convergence of correlated calculations on water. J Chem Phys 106(23):9639–9646. doi:10.1063/1.473863

    Article  CAS  Google Scholar 

  40. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–81

    Article  CAS  Google Scholar 

  41. Improta R, Barone V, Scalmani G, Frisch MJ (2006) A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. J Chem Phys 125(5):054103. doi:10.1063/1.2222364

    Article  Google Scholar 

  42. Improta R, Scalmani G, Frisch MJ, Barone V (2007) Toward effective and reliable fluorescence energies in solution by a new state specific polarizable continuum model time dependent density functional theory approach. J Chem Phys 127(7):074504. doi:10.1063/1.2757168

    Article  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, J. A., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A. 1. Gaussian. Gaussian Inc, Wallingford, CT

  44. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Electronic structure calculations on workstation computers: the program system turbomole. Chem Phys Lett 162(3):165–169. doi:10.1016/0009-2614(89)85118-8

    Article  CAS  Google Scholar 

  45. Piecuch P, Kucharski SA, Kowalski K, Musial M (2002) Efficient computer implementation of the renormalized coupled-cluster methods: the R-CCSD [T], R-CCSD(T), CR-CCSD [T], and CR-CCSD(T) approaches. Comput Phys Commun 149(2):71–96. doi:10.1016/S0010-4655(02)00598-2

    Article  CAS  Google Scholar 

  46. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic-structure system. J Comput Chem 14(11):1347–1363. doi:10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  47. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev-Comput Mol Sci 2(1):73–78. doi:10.1002/Wcms.81

    Article  CAS  Google Scholar 

  48. Kysel O, Budzák Š, Mach P, Medveď M (2010) MP2 and DFT study of IR spectra of TCNE-methylsubstituted benzene complexes: Is charge transfer important? Int J Quantum Chem 110(9):1712–1728. doi:10.1002/qua.22321

    CAS  Google Scholar 

  49. Granatier J, Pitoňák M, Hobza P (2012) Accuracy of several wave function and density functional theory methods for description of noncovalent interaction of saturated and unsaturated hydrocarbon dimers. J Chem Theory Comput 8(7):2282–2292. doi:10.1021/ct300215p

    Article  CAS  Google Scholar 

  50. Riley KE, Pitoňák M, Jurečka P, Hobza P (2010) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 110(9):5023–5063. doi:10.1021/cr1000173

    Article  CAS  Google Scholar 

  51. Frey JE, Andrews AM, Ankoviac DG, Beaman DN, Du Pont LE, Elsner TE, Lang SR, Zwart MAO, Seagle RE, Torreano LA (1990) Charge-transfer complexes of tetracyanoethylene with cycloalkanes, alkenes, and alkynes and some of their aryl derivatives. J Org Chem 55(2):606–624. doi:10.1021/jo00289a041

    Article  CAS  Google Scholar 

  52. Salman HMA, Abu-Krisha MM, El-Sheshtawy HS (2004) Charge-transfer complexes of mercaptobenzimidazoles with sigma- and pi-electron acceptors. Can J Anal Sci Spectrosc 49(5):282–289

    CAS  Google Scholar 

  53. Khuseynov D, Fontana MT, Sanov A (2012) Photoelectron spectroscopy and photochemistry of tetracyanoethylene radical anion in the gas phase. Chem Phys Lett 550:15–18. doi:10.1016/j.cplett.2012.08.035

    Article  CAS  Google Scholar 

  54. Zanni MT, Taylor TR, Greenblatt BJ, Soep B, Neumark DM (1997) Characterization of the I-2 (−) anion ground state using conventional and femtosecond photoelectron spectroscopy. J Chem Phys 107(19):7613–7619. doi:10.1063/1.475110

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Slovak Research and Development Agency (project APVV-0 059–10) and the Project: Mobility - enhancing research, science and education at the Matej Bel University, ITMS code: 26 110 230 082, under the Operational Program Education financed by the European Social Fund. A part of the calculations was performed in the High Performance Computing Center of the Matej Bel University in Banská Bystrica using the HPCC infrastructure acquired in projects ITMS 26 230 120 002 and 26 210 120 002 (Slovak infrastructure for high-performance computing) supported by the Research & Development Operational Programme funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Šimon Budzák.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mach, P., Budzák, Š., Juhász, G. et al. Theoretical study (CC2, DFT and PCM) of charge transfer complexes between antithyroid thioamides and TCNE: electronic CT transitions. J Mol Model 20, 2312 (2014). https://doi.org/10.1007/s00894-014-2312-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2312-7

Keywords

Navigation