Skip to main content
Log in

Investigation of the torsional barrier of EDOT using molecular mechanics and DFT methods

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

When heterocyclic monomers are polymerized by electrochemical or chemical methods, they form fully conjugated polymers which have a wide range of applications due to their outstanding electronic properties. Among this class of compounds, thiophene derivatives are widely used due to their chemical stability and synthesis flexibility. With the goal to investigate the torsion barrier of polymer chains, a few units of 3,4-ethylenedioxythiophene (EDOT) were chosen and submitted to molecular mechanics (MM), density functional theory (DFT) and coupled cluster CCSD(T) calculations. This study helps to understand the performance and transferability of force fields used in molecular mechanics and molecular dynamics simulations often used to describe structure–property relationships of those systems. Determination of inter-ring torsion angle was performed in a comparative study using both force field, DFT and CCSD(T) methods. A good agreement was noticed between MM and QC results and highlights the importance of the description of the interactions involving the oxygen atoms present in the structure of EDOT. These observations are related to the α,α-coupling that occurs between the monomer units and yields a linear polymer. DFT HOMO and LUMO orbitals were also presented. Finally, UV–vis spectra of EDOT units were obtained using several levels of theory by means of time-dependent DFT calculations (TD-DFT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Roncali J (1992) Conjugated poly(thiophenes): synthesis, functionalization, and applications. Chem Rev 92:711–738. doi:10.1021/cr00012a009

    Article  CAS  Google Scholar 

  2. McCullough RD, Lowe RD, Jayaraman M, Anderson DL (1993) Design, synthesis, and control of conducting polymer architectures: structurally homogeneous poly(3-alkylthiophenes). J Org Chem 58:904–912. doi:10.1021/jo00056a024

    Article  CAS  Google Scholar 

  3. Yue R, Xu J (2012) Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials: a mini-review. Synth Met 162:912–917. doi:10.1016/ j.synthmet.2012.04.005

    Article  CAS  Google Scholar 

  4. Sharp Norton JC, Han MG, Creager S, Foulger S (2012) Electrochemical redox of PEDOT-coated core-shell silica spheres stabilized in a PEG-based hydrogel matrix: modulation of the optical properties by doping with various oxidative mediators. Int J Electrochem Sci 7:3627–3637

    CAS  Google Scholar 

  5. Zarras P, Irvin J (2003) Electrically active polymer. Encycl Polym Sci Technol 6:88–134. doi:10.1002/0471440264.pst107

    Google Scholar 

  6. Roncali J, Blanchard P, Frère P (2005) 3,4-Ethylenedioxythiophene (EDOT) as a versatile building block for advanced functional π-conjugated systems. J Mater Chem 15:1589–1610. doi:10.1039/b415481a

    CAS  Google Scholar 

  7. Alemán C, Armelin E, Iribarren JI, Liesa F, Laso M, Casanovas J (2005) Structural and electronic properties of 3,4-ethilenedioxythiophene, 3,4-ethilenedisulfanylfurane and thiophene oligomers: a theoretical investigation. Synth Met 149:151–156. doi:10.1016/j.synthmet.2004.12.012

    Article  Google Scholar 

  8. Liu CL, Tsai FC, Chang CC, Hsieh KH, Lin JL, Chen WC (2005) Theoretical analysis on the geometries and electronic structures of coplanar conjugated poly(azomethine)s. Polymer 46:4950–4957. doi:10.1016/j.polymer.2005.03.059

    Article  CAS  Google Scholar 

  9. Dkhissi A, Beljonne D, Lazzaroni R (2009) Atomic scale modeling of interfacial structure of PEDOT/PSS. Synth Met 159:546–549. doi:10.1016/j.synthmet.2008.11.022

    Article  CAS  Google Scholar 

  10. Zhang L, Li M, Wang C, Wang Y, Shen Y (2013) Electropolymerization and properties of 3,4-ethilenedioxythiophene backbone polymer with tetrathiafulvalene as pedant. J Appl Polym Sci 5:3356–3364. doi:10.1002/app.37803

    Article  Google Scholar 

  11. Barbarella G, Bonghini A, Zambianchi M (1994) Regiochemistry and conformation of poly(3-hexylthiophene) via the synthesis and the spectroscopic characterization of the model configurational triads. Macromolecules 27:3039–3045. doi:10.1021/ma00089a022

    Article  CAS  Google Scholar 

  12. Poater J, Casanovas J, Solà M, Alemán C (2010) Examining the planarity of poly(3,4-ethylenedioxythiophene): consideration of self-rigidification, electronic, and geometric effects. J Phys Chem A 114:1023–1028. doi:10.1021/jp908764s

    CAS  Google Scholar 

  13. Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B102:7338–7364. doi:10.1021/jp980939v

    Google Scholar 

  14. Sun H, Mumby SJ, Maple JR, Hagler AT (1994) An ab initio CFF93 all-atom force field for polycarbonates. J Am Chem Soc 116:2978–2987. doi:10.1021/ja00086a030

    Article  CAS  Google Scholar 

  15. Rappe AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035. doi:10.1021/ja00051a040

    Article  CAS  Google Scholar 

  16. Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94:8897–8909. doi:10.1021/j100389a010

    CAS  Google Scholar 

  17. Gaedt K, Höltje HD (1998) Consistent valence force-field parameterization of bond lengths and angles with quantum chemical ab initio methods applied to some heterocyclic dopamine D3-receptor agonists. J Comput Chem 19:935–946. doi:10.1002/(SICI)1096-987X(199806)19:8<935::AID-JCC12>3.0.CO;2-6

    Article  CAS  Google Scholar 

  18. Materials Studio, Accelrys. © 2001–2011 Accelrys Software Inc

  19. Gaussian 09, Revision A.1, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo, C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J. W, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox D J (2009) Gaussian, Inc., Wallingford, CT

  20. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377. doi:10.1063/1.464304

    CAS  Google Scholar 

  21. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. doi:10.1016/j.cplett.2004.06.011

    CAS  Google Scholar 

  22. Vydrov OA, Scuseria GE (2006) Assessment of a long-range corrected hybrid functional. J Chem Phys 125:234109. doi:10.1063/1.2409292

    Google Scholar 

  23. Becke AD (1993) Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648. doi:10.1063/1.464913

    CAS  Google Scholar 

  24. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6169. doi:10.1063/1.478522

    CAS  Google Scholar 

  25. Xiao H, Tahir-Kheli J, Godard WA III (2011) Accurate band gaps for semiconductors from density functional theory. J Phys Chem Lett 2:212–217. doi:10.1021/jz101565j

    CAS  Google Scholar 

  26. Alves LF, Gargano R, Alcanfor SKB, Romeiro LAS, Martins JBL (2011) A chromophoric study of 2-ethylhexyl p-methoxycinnamate. Chem Phys Lett 516:162–165. doi:10.1016/cplett.2011.09.078

    CAS  Google Scholar 

  27. Lu SI (2010) The K-band λmax values of the ultraviolet–visible spectra of some hydrazones in ethanol by a TD-DFT/PCM approach. Chem Phys Lett 494:198–201. doi:10.1016/j.cplett.2010.06.010

    CAS  Google Scholar 

  28. Bertran O, Torras J, Alemán C (2010) Modeling the structural and electronic properties of an optically active regioregular polythiophene. J Phys Chem C 114:11074–11080. doi:10.1021/jp102223s

    Article  CAS  Google Scholar 

  29. Fazzi D, Caironi M, Castiglioni C (2011) Quantum-chemical insights into the prediction of charge transport parameters for a naphthalenetetracarboxydiimide-based copolymer with enhanced electron mobility. J Am Chem Soc 133:19056–19059. doi:10.1021/ja208824d

    Article  CAS  Google Scholar 

  30. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728. doi:10.1063/1.1674902

    CAS  Google Scholar 

  31. Purvis GD III, Bartlett RJ (1982) A full coupled-cluster singles and doubles model—the inclusion of disconnected triples. J Chem Phys 76:1910–1918. doi:10.1063/1.443164

    CAS  Google Scholar 

  32. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464. doi:10.1016/0009-2614(96)00440-X

    CAS  Google Scholar 

  33. Wallace GG, Spinks GM, Kane-Maguire LAP, Teasdale PR (2009) Conductive electroactive polymers: intelligent polymer systems, 3rd edn. CRC, Boca Raton, p 221

  34. Steckler TT, Abboud KA, Craps M, Rinzler AG, Reynolds JR (2007) Low band gap EDOT–benzobis(thiadiazole) hybrid polymer characterized on near-IR transmissive single walled carbon nanotube electrodes. Chem Commun 4904–4906. doi:10.1039/B709672K

Download references

Acknowledgments

The authors are grateful for financial support of National Counsel of Technological and Scientific Development (CNPq) and Coordination of Improvement of Higher Education Personnel (Capes) Brazilian agencies. We also thank Prof. David Azevedo (IF-UnB) for his help with the COMPASS force field calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João B. L. Martins.

Additional information

This paper belongs to Topical Collection Brazilian Symposium of Theoretical Chemistry (SBQT2013)

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 87 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durães, J.A., da Silva Filho, D.A., Ceschin, A.M. et al. Investigation of the torsional barrier of EDOT using molecular mechanics and DFT methods. J Mol Model 20, 2405 (2014). https://doi.org/10.1007/s00894-014-2405-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2405-3

Keywords

Navigation