Skip to main content
Log in

Theoretical study of structure and stability of small gadolinium carboxylate complexes in liquid scintillator solvents

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structural properties of three small gadolinium carboxylate complexes in three liquid scintillator solvents (pseudocumene, linear alkylbenzene, and phenyl xylylethane) were theoretically investigated using density functional theory (B3LYP/LC-RECP) and polarizable continuum model (PCM). The average interaction energy between gadolinium atom and carboxylate ligand (E int) and the energy difference of the highest singly occupied molecular orbital and lowest unoccupied molecular orbital (\( \varDelta \) SL) were calculated to evaluate and compare the relative stability of these complexes in solvents. The calculation results show that the larger (with a longer alkyl chain) gadolinium carboxylate complex has greater stability than the smaller one, while these gadolinium carboxylates in linear alkylbenzene were found to have greater stability than those in the other two solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. An FP, Daya Bay Collaboration et al (2012) Observation of electron-antineutrino disappearance at Daya Bay. Phys Rev Lett 108:171803

    Article  Google Scholar 

  2. Ahn JK, Reno Collaboration et al (2012) Observation of reactor electron antineutrinos disappearance in the RENO experiment. Phys Rev Lett 108:191802

    Article  CAS  Google Scholar 

  3. Reines F, Cowan CL (1956) The neutrino. Nature 178:446–449

    Article  CAS  Google Scholar 

  4. Yeh M, Garnov A, Hahn RL (2007) Gadolinium-loaded liquid scintillator for high precision measurements of antineutrino oscillations and the mixing angle, θ13. Nucl Inst Methods A 578:329–339

    Article  CAS  Google Scholar 

  5. Pabst A (1943) Crystal structure of gadolinium formate, Gd(OOCH)3. J Chem Phys 11:145–149

    Article  CAS  Google Scholar 

  6. Belova NV, Girichev GV, Haaland A, Zhukova TA, Kuzminma NP (2013) The molecular structure of tris(2,2,6,6-tetramethyl-heptane-3,5-dione) indium: gas phase electron diffraction and quantum chemical calculations. Struct Chem 24:901–908

    Article  CAS  Google Scholar 

  7. Belova NV, Sliznew VV, Zhukova TA, Girichev GV (2011) Molecular structure and intramolecular rearrangements in tris-2,2,6,6-tetramethyl-heptane-3,5-dione complexes, M(thd)3 (M = B, Al, Ga, In, Tl) by DFT calculations. Comput Theor Chem 967:199–205

    Article  CAS  Google Scholar 

  8. Troxler L, Hutschka DF, Wipff (1998) Complexation of Ln3+ lanthanide cations with phosphoryl-containing O = PR3 ligands: a quantum-mechanics study. J Mol Struct (THEOCHEM) 431:151–163

    Article  CAS  Google Scholar 

  9. Esrafili MD, Alizadeh V (2012) A theoretical study on bonding and energy aspects of and [LnL3 H2O]3+ complexes (Ln = La, Eu, Gd, Lu; L = β-diketone, β-dithioketone, β-diphosphine oxide). Mol Phys 110:2239–2249

    Article  CAS  Google Scholar 

  10. Perez-Mayoral E, Soriano E, Cerdan S, Ballesteros P (2006) Experimental and theoretical study of lanthanide complexes based on linear and macrocyclic polyamino polycarboxylic acids containing pyrazolylethyl arms. Molecules 11:345–356

    Article  CAS  Google Scholar 

  11. Cao X, Dolg M (2003) Density functional studies on lanthanide (III) texaphyrins(Ln-Tex2+, Ln = La, Gd, Lu): structure, stability and electronic excitation spectrum. Mol Phys 101:2427–2435

    Article  CAS  Google Scholar 

  12. Belova NV, Girichev GV, Hinchley SL, Kuzmina NP, Rankin DWH, Zaitzeva GI (2004) Molecular structure of tris-(dipivaloylmethanato) lutetium(III) studied by gas electron diffraction and ab-initio and DFT calculations. Dalton Trans 11:1715–1718

    Article  Google Scholar 

  13. Gutierrez F, Rabbe C, Poteau R, Daudey JP (2005) Theoretical study of ln(III) complexes with polyaza-aromatic ligands: geometries of [LnL(H2O)n]3+ complexes and successes and failures of TD-DFT. J Phys Chem A 109:4325–4330

    Article  CAS  Google Scholar 

  14. Wang D, Zhao C, Phillips DL (2004) A theoretical study of divalent lanthanide (Sm and Yb) complexes with a tri-azacyclononane functionalized tetra-methylcyclopentadienyl ligand. Organometallics 23:1953–1960

    Article  CAS  Google Scholar 

  15. Patterson MS, Greene RC (1965) Measurement of low energy beta-emitters in aqueous solution by liquid scintillation counting of emulsions. Anal Chem 37:854–857

    Article  CAS  Google Scholar 

  16. Harrocks DL (1974) Applications of liquid scintillation counting. Academic, New York

    Google Scholar 

  17. Apollonio M, CHOOZ Collaboration et al. (1998) Initial results from the CHOOZ long baseline reactor neutrino oscillation experiment. Phys Lett B 420:397–404

    Article  CAS  Google Scholar 

  18. Bellini B, Borexino Collaboration et al. (2011) Precision measurement of the Be7 solar neutrino interaction rate in Borexino. Phys Rev Lett 107:141302

    Article  CAS  Google Scholar 

  19. Abe Y, Double Chooz collaboration et al (2012) Indication of reactor νe disappearance in the double chooz experiment. Phys Rev Lett 108:131801

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Rev. E01, Gaussian, Inc., Wallingford CT

  21. Becke AD (1993) Density functional thermo-chemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  22. Dolg M, Stoll H, Savin A, Preuss H (1989) Energy-adjusted pseudopotentials for the rare earth elements. Theor Chim Acta 75:173–194

    Article  CAS  Google Scholar 

  23. Dolg M, Stoll H, Preuss H (1993) A combination of quasirelativistic pseudopotential and ligand field calculation for lanthanoid compounds. Theor Chim Acta 85:441–450

    Article  CAS  Google Scholar 

  24. Maron L, Eisenstein O (2000) Do f electrons play a role in the lanthanide-ligand bonds? a DFT study of Ln(NR2)3; R = H, SiH3. J Phys Chem A 104:7140–7143

    Article  CAS  Google Scholar 

  25. Boehme C, Coupez B, Wipff B (2002) Interaction of M3+ lanthanide cations with diamide ligands and their thia analogues: a quantum mechanics study of monodentate vs bidentate binding, counterion effects, and ligand protonation. J Phys Chem A 106:6487–6498

    Article  CAS  Google Scholar 

  26. Cances MT, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041

    Article  CAS  Google Scholar 

  27. Cossi M, Barone V, Mennucci B, Tomasi J (1998) Ab-initio study of ionic solutions by a polarizable continuum dielectric model. Chem Phys Lett 286:253–260

    Article  CAS  Google Scholar 

  28. Mennucci B, Tomasi J (1997) Continuum solvation models: a new approach to the problem of solute’s charge distribution and cavity boundaries. J Chem Phys 106:5151–5158

    Article  CAS  Google Scholar 

  29. Huang P, Li P, Fu Z, He C, Ding Y, Li J, Qi M (2010) Study of attenuation length of linear alkyl benzene as LS solvent. J Instrum 5, P08007

    Article  Google Scholar 

  30. Huang P, Cao H, Qi M, Li P, Fu Z, He C, Li J (2011) Theoretical study of UV–vis light absorption of some impurities in alkyl benzene type liquid scintillator solvents. Theor Chem Accounts 129:229–234

    Article  CAS  Google Scholar 

  31. Hess BA, Schaad LJ (1971) Hueckel molecular orbital pi resonance energies. benzenoid hydrocarbons. J Am Chem Soc 93:2413–2416

    Article  CAS  Google Scholar 

  32. Pearson RG (1988) Electronic spectra and chemical reactivity. J Am Chem Soc 110:2092–2097

    Article  CAS  Google Scholar 

  33. Aihara J (1999) Reduced HOMO − LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J Phys Chem A 103:7487–7495

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pin-Wen Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, PW. Theoretical study of structure and stability of small gadolinium carboxylate complexes in liquid scintillator solvents. J Mol Model 20, 2434 (2014). https://doi.org/10.1007/s00894-014-2434-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2434-y

Keywords

Navigation