Skip to main content
Log in

Theoretical study of the cooperative effects between the triel bond and the pnicogen bond in BF3···NCXH2···Y (X = P, As, Sb; Y = H2O, NH3) complexes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The interplay between the triel bond and the pnicogen bond in BF3···NCXH2···Y (X = P, As, Sb; Y = H2O, NH3) complexes was studied theoretically. Both bonds exhibited cooperative effects, with shorter binding distances, larger interaction energies, and greater electron densities found for the ternary complexes than for the corresponding binary ones. The cooperative effects between the triel bond and the pnicogen bond were probed by analyzing molecular electrostatic potentials, charge transfer, and orbital interactions. The results showed that the enhancement of the triel bond can mainly be attributed to the electrostatic interaction, while the strengthening of the pnicogen bond can be ascribed chiefly to the electrostatic and orbital interactions. In addition, the origins of both the triel bond and the pnicogen bond were deduced via energy decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jurgens R, Almlöf J (1991) Chem Phys Lett 176:263–265

    Article  CAS  Google Scholar 

  2. Dvorak MA, Ford RS, Suenram RD, Lovas FJ, Leopold KR (1992) J Am Chem Soc 114:108–114

    Article  CAS  Google Scholar 

  3. Burns WA, Leopold KR (1993) J Am Chem Soc 115:11622–11623

    Article  CAS  Google Scholar 

  4. Reeve SW, Burns WA, Lovas FJ, Suenram RD, Leopold KR (1993) J Phys Chem 97:10630–10637

    Article  CAS  Google Scholar 

  5. Jiao HJ, Schleyer PR (1994) J Am Chem Soc 116:7429–7430

    Article  CAS  Google Scholar 

  6. Fujiang D, Fowler PW, Legon AC (1995) J Chem Soc Chem Commun 24:113–114

    Article  Google Scholar 

  7. Leopold KR, Canagaratna M, Phillips JA (1997) Acc Chem Res 30:57–64

    Article  CAS  Google Scholar 

  8. Wells NP, Phillips JA (2002) J Phys Chem A 106:1518–1523

    Article  CAS  Google Scholar 

  9. Giesen DJ, Phillips JA (2003) J Phys Chem A 107:4009–4018

    Article  CAS  Google Scholar 

  10. Venter G, Dillen J (2004) J Phys Chem A 108:8378–8384

    Article  CAS  Google Scholar 

  11. Phillips JA, Giesen DJ, Wells NP, Halfen JA, Knutson CC, Wrass JP (2005) J Phys Chem A 109:8199–8208

    Article  CAS  Google Scholar 

  12. Hase Y (2007) Spectrochim Acta A 68:734–738

    Article  CAS  Google Scholar 

  13. Hunt SW, Leopold KR (2001) J Phys Chem A 105:5498–5506

    Article  CAS  Google Scholar 

  14. Cabaleiro-Lago EM, Rios MA (1998) Chem Phys Lett 294:272–276

    Article  CAS  Google Scholar 

  15. Jensen WB (1980) The Lewis acid–base concepts: an overview. Wiley-Interscience, New York

  16. Pearson RG (1997) Chemical hardness—applications from molecules to solids. Wiley, Weinheim

  17. Mulliken RS, Person WB (1969) Molecular complexes. Wiley, New York

    Google Scholar 

  18. Hargittai M, Hargittai I (1977) The molecular geometries of coordination compounds in the vapor phase. Elsevier, Amsterdam

    Google Scholar 

  19. Lewis GN (1923) Valence and the structure of atoms and molecules. The Chemical Catalog Company, Inc., New York

  20. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) J Mol Model 18:541–548

    Article  CAS  Google Scholar 

  21. Grabowski SJ (2015) ChemPhysChem 16:1470–1479

    Article  CAS  Google Scholar 

  22. Grabowski SJ (2014) ChemPhysChem 15:2985–2993

    Article  CAS  Google Scholar 

  23. Hennemann M, Murray JS, Politzer P, Riley KE, Clark T (2012) J Mol Model 18:2461–2469

    Article  CAS  Google Scholar 

  24. Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  25. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386–395

    Article  CAS  Google Scholar 

  26. Metrangolo P, Meyer F, Pilati T, Proserpio DM, Resnati G (2007) Chem Eur J 13:5765–5772

    Article  CAS  Google Scholar 

  27. Cavallo G, Metrangolo P, Pilati T, Resnati G, Sansotera M, Terraneo G (2010) Chem Soc Rev 3:3772–3783

    Article  CAS  Google Scholar 

  28. Sanz P, Mó O, Yanez M (2002) J Phys Chem A 106:4661–4668

    Article  CAS  Google Scholar 

  29. Wang W, Ji B, Zhang Y (2009) J Phys Chem A 113:8132–8135

    Article  CAS  Google Scholar 

  30. Murray JS, Lane P, Clark T, Politzer P (2007) J Mol Model 13:1033–1038

    Article  CAS  Google Scholar 

  31. Del Bene JE, Alkorta I, Sanchez-Sanz G, Elguero J (2011) J Phys Chem A 115:13724–13731

    Article  CAS  Google Scholar 

  32. Scheiner S (2011) Chem Phys Lett 514:32–35

    Article  CAS  Google Scholar 

  33. Grabowski SJ (2013) Chem Eur J 19:14600–14611

    Article  CAS  Google Scholar 

  34. Murray JS, Lane P, Politzer P (2007) Int J Quantum Chem 107:2286–2292

    Article  CAS  Google Scholar 

  35. Grabowski SJ (2014) Phys Chem Chem Phys 16:1824–1834

    Article  CAS  Google Scholar 

  36. Mani D, Arunan E (2013) Phys Chem Chem Phys 15:14377–14383

    Article  CAS  Google Scholar 

  37. Bauz A, Mooibroek TJ, Frontera A (2013) Angew Chem Int Ed 52:12317–12321

    Article  CAS  Google Scholar 

  38. Murray JS, Lane P, Politzer P (2009) J Mol Model 15:723–729

    Article  CAS  Google Scholar 

  39. Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011) Chem Eur J 17:6034–6038

    Article  CAS  Google Scholar 

  40. Joshi PR, Ramanathan N, Sundararajan K, Sankaran K (2015) J Phys Chem A 119:3440–3451

    Article  CAS  Google Scholar 

  41. Sarkar S, Pavan MS, Row TNG (2015) Phys Chem Chem Phys 17:2330–2334

    Article  CAS  Google Scholar 

  42. Solimannejad M, Gharabaghi M, Scheiner S (2011) J Chem Phys 134:024312

    Article  CAS  Google Scholar 

  43. Scheiner S (2011) J Chem Phys 134:094315

    Article  CAS  Google Scholar 

  44. Scheiner S (2011) J Phys Chem A 115:11202–11209

    Article  CAS  Google Scholar 

  45. Adhikari U, Scheiner S (2012) J Phys Chem A 116:3487–3497

    Article  CAS  Google Scholar 

  46. Adhikari U, Scheiner S (2012) Chem Phys Lett 532:31–35

    Article  CAS  Google Scholar 

  47. Scheiner S (2011) J Chem Phys 134:164313

    Article  CAS  Google Scholar 

  48. Scheiner S, Adhikari U (2011) J Phys Chem A 115:11101–11110

    Article  CAS  Google Scholar 

  49. Li QZ, Li R, Liu XF, Li WZ, Cheng JB (2012) J Phys Chem A 116:2547–2553

    Article  CAS  Google Scholar 

  50. Li QZ, Li R, Liu XF, Li WZ, Cheng JB (2012) ChemPhysChem 13:1205–1212

    Article  CAS  Google Scholar 

  51. An XL, Li R, Li QZ, Liu XF, Li WZ, Cheng JB (2012) J Mol Model 18:4325–4332

    Article  CAS  Google Scholar 

  52. Bauzá A, Quiñonero D, Deyá PM, Frontera A (2013) CrystEngComm 15:3137–3144

    Article  Google Scholar 

  53. Xu HY, Wang W, Zou JW (2013) Acta Chim Sin 71:1175–1182

    Article  CAS  Google Scholar 

  54. Ma FY, Li AY (2014) Comput Theor Chem 1045:78–85

    Article  CAS  Google Scholar 

  55. Alkorta I, Elguero J, Solimannejad M (2014) J Phys Chem A 118:947–953

    Article  CAS  Google Scholar 

  56. Del Bene JE, Alkorta I, Elguero J (2014) J Phys Chem A 118:3386–3392

    Article  CAS  Google Scholar 

  57. Zhuo HY, Li QZ (2015) Phys Chem Chem Phys 17:9153–9160

    Article  CAS  Google Scholar 

  58. Politzer P, Murray JS, Janjić GV, Zarić SD (2014) Crystals 4:12–31

    Article  CAS  Google Scholar 

  59. Bauzá A, Quiñonero D, Deyá PM, Frontera A (2012) Phys Chem Chem Phys 14:14061–14066

    Article  CAS  Google Scholar 

  60. Del Bene JE, Alkorta I, Elguero J (2014) J Phys Chem A 118:2360–2366

    Article  CAS  Google Scholar 

  61. Esrafili MD, Vakili M, Solimannejad M (2014) Chem Phys Lett 609:37–41

    Article  CAS  Google Scholar 

  62. Alkorta I, Sánchez-Sanz G, Elguero J, Del Bene JE (2012) J Chem Theory Comput 8:2320–2327

    Article  CAS  Google Scholar 

  63. Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2012) J Phys Chem A 116:9205–9213

    Article  CAS  Google Scholar 

  64. Esrafilia MD, Mohammadian-Sabeta F, Solimannejad M (2015) J Mol Graph Model 57:99–105

    Article  CAS  Google Scholar 

  65. Solimannejad M, Ramezani V, Trujillo C, Alkorta I, Sánchez-Sanz G, Elguero J (2012) J Phys Chem A 116:5199–5206

    Article  CAS  Google Scholar 

  66. Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2013) J Phys Chem A 117:3133–3141

    Article  CAS  Google Scholar 

  67. Zhuo HY, Li QZ, Li WZ, Cheng JB (2014) J Chem Phys 141:244305

    Article  CAS  Google Scholar 

  68. Zhuo HY, Li QZ, Li WZ, Cheng JB (2015) New J Chem 39:2067–2074

    Article  CAS  Google Scholar 

  69. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Scalmani G, Cossi M, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, KleneMLX KJE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, ZakrzewskiVG DS, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-LahamMA PCY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Gonzalez C, Wong MW, Pittsburgh PA, Pople JA (2009) Gaussian 09, revision A02. Gaussian Inc., Wallingford

  70. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  71. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  72. Bader RFW (2000) AIM2000 program, version 2.0. McMaster University, Hamilton

    Google Scholar 

  73. Reed AE, Curtiss LA, Weinhold FA (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  74. Schmidt MW, Baldridge KK, Boalz JA, Elbert ST, Gorden MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  75. Su PF, Li H (2009) J Chem Phys 13:014102

    Article  CAS  Google Scholar 

  76. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  77. Parthasarathi R, Subramanian V, Sathyamurthy N (2006) J Phys Chem A 110:3349–3351

    Article  CAS  Google Scholar 

  78. Koch U, Popelier PLA (1995) J Phys Chem A 99:9747–9754

    Article  CAS  Google Scholar 

  79. Arnold WD, Oldfield E (2000) J Am Chem Soc 122:12835–12841

    Article  CAS  Google Scholar 

  80. Politzer P, Murray JS, Clark T (2015) J Mol Model 21:52

    Article  CAS  Google Scholar 

  81. Fiacco DL, Leopold KR (2003) J Phys Chem A 107:2808–2814

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21573188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Zhong Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 35 kb)

Table S2

(DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, MX., Zhuo, HY., Li, QZ. et al. Theoretical study of the cooperative effects between the triel bond and the pnicogen bond in BF3···NCXH2···Y (X = P, As, Sb; Y = H2O, NH3) complexes. J Mol Model 22, 10 (2016). https://doi.org/10.1007/s00894-015-2882-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2882-z

Keywords

Navigation