Skip to main content
Log in

Theoretical study of electronic and nonlinear optical properties of novel graphenylene-based materials with donor–acceptor frameworks

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A new functionalized graphenylene-based structure was designed by adsorbing of alkali metals M3 and superalkali M3O (M = Li, Na, K) on graphenylene (BPC) surface. The spectral data show that the spectral properties of the M3O@BPC system are very similar because the two-dimensional material plays a major role in the main transition. However, for M3@BPC system, the spectral shapes of the three systems show significant changes compared to each other because the different alkali metals play a major role in the main transition process. The calculation results show that the introduction of superalkali does not significantly increase the first polarizability; however, the introduction of alkali metals can obtain considerable nonlinear optical materials. For M3@BPC system, the first hyperpolarizability increases significantly when heavier alkali metal is introduced into the two-dimensional structure, which is found to be 866,290.9 au for K3@ BPC. A two-level model and first hyperpolarizability density can explain the large first polarizability of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

N/A.

Code availability

N/A.

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF (1985) C60:Buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  2. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  PubMed  Google Scholar 

  4. Achtyl JL, Unocic RR, Xu L, Cai Y, Raju M, Zhang W, Sacci RL, Vlassiouk IV, Fulvio PF, Ganesh P et al (2015) Aqueous proton transfer across single-layer graphene. Nat Commun 6:1–7

    Article  CAS  Google Scholar 

  5. Perim E, Paupitz R, Autreto PAS, Galvao DS (2014) Inorganic graphenylene: a porous two-dimensional material with tunable band gap. J Phys Chem C 118:23670–23674

    Article  CAS  Google Scholar 

  6. Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nat Nanotech 2:605–615

    Article  CAS  Google Scholar 

  7. Coluci V, Galvao D, Jorio A (2006) Geometric and electronic structure of carbon nanotube networks: ‘super’-carbon nanotubes. Nanotechnology 17:617–621

    Article  CAS  Google Scholar 

  8. Kamaras K, Itkis M, Hu H, Zhao B, Haddon R (2003) Covalent bond formation to a carbon nanotube metal. Science 301:1501

    Article  CAS  PubMed  Google Scholar 

  9. Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed 49:2114–2138

    Article  CAS  Google Scholar 

  10. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537

    Article  CAS  PubMed  Google Scholar 

  11. Zalalutdinov MK, Robinson JT, Junkermeier CE, Culbertson JC, Reinecke TL, Stine R, Sheehan PE, Houston BH, Snow ES (2012) Engineering graphene mechanical systems. Nano Lett 12:4212–4218

    Article  CAS  PubMed  Google Scholar 

  12. Withers F, Dubois M, Savchenko AK (2010) Electron properties of fluorinated single-layer graphene transistors. Phys Rev B 82:73403–73407

    Article  CAS  Google Scholar 

  13. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  14. Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7:3394–3398

    Article  CAS  PubMed  Google Scholar 

  15. Sofo JO, Chaudhari AS, Barber GD (2007) Graphane: a two-dimensional hydrocarbon. Phys Rev B 75:153401

    Article  CAS  Google Scholar 

  16. Elias D, Nair R, Mohiuddin T, Morozov S, Blake P, Halsall M, Ferrari A, Boukhvalov D, Katsnelson M, Geim A, Novoselov K (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphene. Science 323:610–613

    Article  CAS  PubMed  Google Scholar 

  17. Solenov D, Junkermeier C, Reinecke TL, Velizhanin KA (2013) Tunable adsorbateadsorbate interactions on graphene. Phys Rev Lett 111:115502

    Article  PubMed  CAS  Google Scholar 

  18. Robinson JT, Burgess JS, Junkermeier CE, Badescu SC, Reinecke TL, Perkins FK, Zalalutdniov MK, Baldwin JW, Culbertson JC, Sheehan PE, Snow ES (2010) Properties of fluorinated graphene films. Nano Lett 10:3001–3005

    Article  CAS  PubMed  Google Scholar 

  19. Deb J, Paul D, Sarkar U (2020) Pentagraphyne: a new carbon allotrope with superior electronic and optical property. J Mater Chem C 8:16143–16150

    Article  CAS  Google Scholar 

  20. Jiang JW, Leng J, Li J, Chang T, Guo X, Zhang T (2017) Twin graphene: a novel two-dimensional semiconducting carbon allotrope. Carbon 118:370–375

    Article  CAS  Google Scholar 

  21. Dua H, Deb J, Paul D, Sarkar U (2021) Twin-graphene as a promising anode material for Na-ion rechargeable batteries. ACS Appl Nano Mater 4:4912–4918

    Article  CAS  Google Scholar 

  22. Li X, Wang Q, Jena P (2017) ψ-graphene: a new metallic allotrope of planar carbon with potential applications as anode materials for lithium-ion batteries. J Phys Chem Lett 8:3234–3241

    Article  CAS  PubMed  Google Scholar 

  23. Haley MM, Brand SC, Pak JJ (1997) Carbon networks based on dehydrobenzoannulenes: synthesis of graphdiyne substructures. Angew Chem, Int Ed Engl 36:836–838

    Article  CAS  Google Scholar 

  24. Randić M, Balabanb AT, Plavšićc D (2011) Applying the conjugated circuits method to Clar structures of [n]phenylenes for determining resonance energies. Phys Chem Chem Phys 13:20644–20648

    Article  PubMed  CAS  Google Scholar 

  25. Du QS, Tang PD, Huang HL, Du FL, Huang K, Xie NZ, Long SY, Li YM, Qiu JS, Huang RB (2017) A new type of two-dimensional carbon crystal prepared from 1,3,5-trihydroxybenzene. Sci Rep 7:40796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pierre MDL, Karamanis P, Baima J, Orlando R, Pouchan C, Dovesi R (2013) Ab initio periodic simulation of the spectroscopic and optical properties of novel porous graphene phases. J Phys Chem C 117:2222–2229

    Article  CAS  Google Scholar 

  27. Liu W, Miao MS, Liu J (2015) Band gap engineering of graphenylene by hydrogenation and halogenation: a density functional theory study. RSC Adv 5:70766–70771

    Article  CAS  Google Scholar 

  28. Song Q, Wang B, Deng K, Feng X, Wagner M, Gale JD, Mullen K, Zhi L (2013) Graphenylene, a unique two-dimensional carbon network with nondelocalized cyclohexatriene units. J Mater Chem C 1:38–41

    Article  CAS  Google Scholar 

  29. Yu YX (2013) Graphenylene: a promising anode material for lithiumion batteries with high mobility and storage. J Mater Chem A 1:13559–13566

    Article  CAS  Google Scholar 

  30. Tang Y, Chen W, Zhang H, Wang Z, Teng D, Cui Y, Feng Z, Dai X (2020) Single-atom metal-modified graphenylene as a high-activity catalyst for CO and NO oxidation. Phys Chem Chem Phys 22:16224–16235

    Article  CAS  PubMed  Google Scholar 

  31. Yadav S, Tam J, Singh CV (2015) A first principles study of hydrogen storage on lithium decorated two dimensional carbon allotropes. Int J Hydrogen Energy 18:6128–6136

    Article  CAS  Google Scholar 

  32. Denisa PA, Iribarne F (2015) Hydrogen storage in doped biphenylene based sheets. Comput Theor Chem 1062:30–35

    Article  CAS  Google Scholar 

  33. Xiong L, Dai J, Song Y, Wen G, Qin C (2016) Investigation of photoelectrical properties of α-Si3N4 nanobelts with surface modifications using first-principles calculations. Phys Chem Chem Phys 18:15686–15696

    Article  CAS  PubMed  Google Scholar 

  34. Nakano M, Fujita H, Takahata M, Yamaguchi K (2002) Theoretical study on second hyperpolarizabilities of phenylacetylene dendrimer: toward an understanding of structure−property relation in NLO responses of fractal antenna dendrimers. J Am Chem Soc 124:9648–9655

    Article  CAS  PubMed  Google Scholar 

  35. Muhammad S, Nakano M, Al-Sehemi AG (2016) Y. Kitagawa, A. Irfan, A.R. Chaudhry, R. Kishi, S. Ito, K. Yoneda, K. Fukuda, Role of a singlet diradical character in carbon nanomaterials: a novel hot spot for efficient nonlinear optical materials. Nanoscale 8:17998–18020

    Article  CAS  PubMed  Google Scholar 

  36. Deb J, Pegu D, Sarkar U (2020) Density functional theory investigation of nonlinear optical properties of T-graphene quantum dots. J Phys Chem A 124:1312–1320

    Article  CAS  PubMed  Google Scholar 

  37. Pegu D, Deb J, Sarkar U (2020) A detailed DFT study on electronic structures and nonlinear optical properties of doped C30. ChemistrySelect 5:6987–6999

    Article  CAS  Google Scholar 

  38. Pegu D, Deb J, Paul D (2018) U. Sarkar, Electronic, nonlinear optical and thermodynamic properties of (CdS)n clusters: a first principle study. Comput Condens Matter 14:40–45

    Article  Google Scholar 

  39. Shehzadi K, Ayub K, Mahmood T (2019) Theoretical study on design of novel superalkalis doped graphdiyne: a new donor–acceptor (D-π-A) strategy for enhancing NLO response. Appl Surf Sci 492:255–263

    Article  CAS  Google Scholar 

  40. Li X, Lu J (2019) Giant enhancement of electronic polarizability and the first hyperpolarizability of fluoridedecorated graphene versus graphyne andgraphdiyne: insights from ab initio calculations. Phys Chem Chem Phys 21:13165–13175

    Article  CAS  PubMed  Google Scholar 

  41. Li X, Lu J (2019) Investigations of electronic and nonlinear optical properties of single alkali metal adsorbed graphene, graphyne and graphdiyne systems by first-principles calculations. J Mater Chem C 7:1630–1640

    Article  CAS  Google Scholar 

  42. Li X, Zhang Y, Lu J (2020) Remarkably enhanced first hyperpolarizability and nonlinear refractive index of novel graphdiyne-based materials for promising optoelectronic applications: a first-principles study. Appl Surf Sci 512:145544

    Article  CAS  Google Scholar 

  43. Rad AS (2015) First principles study of Al-doped graphene as nanostructure adsorbent for NO2 and N2O: DFT calculations. Appl Surf Sci 357:1217–1224

    Article  CAS  Google Scholar 

  44. Ma F, Zhou ZJ, Liu YT (2012) Li2 trapped inside tubiform [n] boron nitride clusters (n=4–8): structures and first hyperpolarizability. ChemPhysChem 13(2012):1307–1312

    Article  CAS  PubMed  Google Scholar 

  45. Zhou ZJ, Yu GT, Ma F, Huang XR, Wu ZJ, Li ZR (2014) Theoretical investigation on nonlinear optical properties of carbon nanotubes with Stone-Wales defect rings. J Mater Chem C 2:306–311

    Article  CAS  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JJE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16. Gaussian Inc, Wallingford CT

    Google Scholar 

  47. Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  PubMed  CAS  Google Scholar 

  48. Oudar JL, Chemla DS (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J Chem Phys 66:2664–2668

    Article  CAS  Google Scholar 

  49. Oudar JL (1977) Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. J Chem Phys 67:446–457

    Article  CAS  Google Scholar 

  50. Datta A, Pati SK (2006) Dipolar interactions and hydrogen bonding in supramolecular aggregates: understanding cooperative phenomena for 1st hyperpolarizability. Chem Soc Rev 35:1305–1323

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the start-up Foundation of Fujian University of Technology (GY-Z13109), Natural Science Foundation of Fujian Province (grant no.: 2021J011079, 2018J01586, 2019J01785), education department of Fujian Province (grant no.: JAT170393, JT180331). Development Foundation of Fujian University of Technology (GY-Z160127), Science and Technology Department of Fujian Province (2019J01785), Science and Technology Major Special Project of Fujian Province (2014HZ0005-1), Industrial Technology joint Innovation Project of Fujian Province (2015–779), Fujian Province Science and Technology Innovation Leaders (GY-Z17142). Supported by Program for Innovative Research Team in Science and Technology in Fujian Province University.

Author information

Authors and Affiliations

Authors

Contributions

Yao-Dong Song performed the theoretical calculation, data analysis, writing, review, and editing. Qian-Ting Wang supervised the project. Wei-wei Gao performed the theoretical calculation. Zhixiong He performed the theoretical calculation. Yan Wu performed the data analysis.

Corresponding authors

Correspondence to Yao-Dong Song or Qian-Ting Wang.

Ethics declarations

Ethics approval

We approved all ethics.

Consent to participate

Confirm.

Consent for publication

Confirm.

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, YD., Wang, QT., Gao, WW. et al. Theoretical study of electronic and nonlinear optical properties of novel graphenylene-based materials with donor–acceptor frameworks. J Mol Model 28, 165 (2022). https://doi.org/10.1007/s00894-022-05162-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05162-3

Keywords

Navigation