Skip to main content

Advertisement

Log in

Computational analysis of mechanical behavior and potential energy of thermoresponsive copper-tantalum nanoalloy

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Temperature, strain rate, and defects are important considerations in determining the mechanical properties of materials. The mechanical properties of nanocrystalline copper-tantalum (Cu-Ta) alloy are investigated using classical molecular dynamics simulation approach in which embedded atom method of potential with periodic boundary conditions in all directions has been adopted. Numerical simulation has been performed to predict the mechanical properties of nanocrystalline copper-tantalum alloy. The virtual tensile test has been conducted at a fixed strain rate and increasing temperature where the discreet change in temperature from 50 to 1600 K has been used as a controlling parameter. The strain rate is fixed in the direction of the principal crystallographic planes and has not been affected by the change in temperature. The mechanical properties of the Cu-Ta nanocrystalline alloy such as yield strength, ultimate strength, and Young’s modulus are observed. Further, simulations are carried out to analyze the vacancy formation energy with vacancy concentration and potential energy response at discrete temperatures. Nanocrystalline Cu-Ta alloy is observed to be more susceptible to failure at high temperatures. Particularly at 300 K, the strength of nanocrystalline Cu-Ta is 6 GPa which decreases to 4 GPa at 1200 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

The custom code generated for the current study is available from the corresponding author on reasonable request.

References

  1. Suryanarayana C, Koch C (2000) Nanocrystalline materials – current research and future directions. Hyperfine Interact 130:5

    Article  CAS  Google Scholar 

  2. Birringer R (1989) Nanocrystalline materials. Mater Sci Eng A 117(33–43):09215093

    Google Scholar 

  3. Tian L (2017) A short review on mechanical behavior of nanocrystalline materials. Int J Metall Met Phys 2:008

    Article  Google Scholar 

  4. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51(4):427–556

    Article  CAS  Google Scholar 

  5. Pandey AK, Siddiqui SA, Dwivedi A, Raj K, Misra N (2011) Density functional theory study on the molecular structure of loganin. J Appl Spectrosc 25:361849

    Google Scholar 

  6. Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc 44(247):335–341

    Article  CAS  PubMed  Google Scholar 

  7. Iftimie R, Minary P, Mark E, Tuckerman. (2005) Ab initio molecular dynamics: concepts, recent developments, and future trends. Proc Natl Acad Sci USA 102(19):6654–6659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Foulkes WMC, Mitas L, Needs RJ, Rajagopal G (2001) Quantum Monte Carlo simulations of solids. Rev Mod Phys 73(1):33–83

    Article  CAS  Google Scholar 

  9. McQuarrie DA (1976) Statistical mechanics. Harper & Row, New York

    Google Scholar 

  10. Rice BM, and Sewell TD. (2008) Equilibrium molecular dynamics simulations. In: Peiris, S.M., Piermarini, G.J. (eds) Static compression of energetic materials. Shock wave and high pressure phenomena. Springer, Berlin, Heidelberg.

  11. Lu L, Li SX, Lu K (2001) An abnormal strain rate effect on tensile behavior in nanocrystalline copper. Scr Mater 45(10):1163–1169

    Article  CAS  Google Scholar 

  12. Yang X, Zhai P, Li L, Zhang Q (2012) Molecular dynamics simulation on mechanical properties of crystalline CoSb3 with vacancy defect. Physica B Condens Matter 407(12):2234–2238

    Article  CAS  Google Scholar 

  13. Dewapriya MAN, Rajapakse RKND (2014) Molecular dynamics simulations and continuum modeling of temperature and strain rate dependent fracture strength of graphene with vacancy defects. J Appl Mech 81(8):081010

    Article  Google Scholar 

  14. Hahn EN, Germann TC, Ravelo R, Hammerberg JE, Meyers MA (2017) On the ultimate tensile strength of tantalum. Acta Mater 126:313–328

    Article  CAS  Google Scholar 

  15. Ruan Z, Wu W, Li N (2018) Effects of strain rate, temperature and grain size on the mechanical properties and microstructure evolutions of polycrystalline nickel nanowires: a molecular dynamics simulation. Wuhan Univ J Nat Sci 23:251–258

    Article  CAS  Google Scholar 

  16. Ruicheng F, Hui C, Haiyan L, Zhiyuan R, Changfeng Y (2018) Effects of vacancy concentration and temperature on mechanical properties of single-crystal γ-TiAl based on molecular dynamics simulation. High Temp Mater Process 37(2):113–120

    Article  Google Scholar 

  17. Srinivasan S, Sharma S, Turnage S, Hornbuckle BC, Kale C, Darling KA, Solanki K (2021) Role of tantalum concentration, processing temperature, and strain-rate on the mechanical behavior of copper-tantalum alloys. Acta Mater 208:116706

    Article  CAS  Google Scholar 

  18. Cotterill RMJ. and Pedersen LB. (1972) Temperature dependence of the vacancy formation energy in krypton by molecular dynamic simulation. Department of Structural Properties of Materials, Plenum Press, 2800 Lyngby - Denmark.

  19. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  20. Daw MS, Foiles SM, Baskes MI (1993) The embedded-atom method: a review of theory and applications. Mater Sci Eng R Rep 9(7):251–310

    Article  CAS  Google Scholar 

  21. Diwan BD (2013) Size effect on the cohesive energy of palladium nanoparticle. J Comput Theor Nanosci 10(11):2779–2781

    Article  CAS  Google Scholar 

  22. Bringa EM, Caro A, Wang Y, Victoria M, Mcnaney JM, Remington BA, Smith RF, Torralva BR, Swygenhoven HV (2005) Ultrahigh strength in nano-crystalline materials under shock loading. Science 309(5742):1838–1841

    Article  CAS  PubMed  Google Scholar 

  23. Rudd RE, Germann TC, Remington BA, Wark JS (2010) Metal deformation and phase transitions at extremely high strain rates. MRS Bull 35:999–1006

    Article  CAS  Google Scholar 

  24. Holian BL, Lomdahl PS (1998) Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations. Science 280:2085–2088

    Article  CAS  PubMed  Google Scholar 

  25. Subramanian PR, Laughlin DE (1989) The Cu-Ta (copper-tantalum) system. Bull alloy phase diagr 10(6):652–655

    Article  CAS  Google Scholar 

  26. Zhao Y, Lu G (2009) First-principles simulations of copper diffusion in tantalum and tantalum nitride. Phys Rev B Condens Matter Mater Phys 79(21):1–9

    Article  Google Scholar 

  27. Monticelli L, Tieleman DP (2013) Force fields for classical molecular dynamics. Methods Mol Biol 924:197–213

    Article  CAS  PubMed  Google Scholar 

  28. Gonzalez MA (2011) Force fields and molecular dynamics simulations. Neutrons et Simulations 12:169–200

    Google Scholar 

  29. Zhou XW, Johnson RA, Wadley HNG (2004) Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys Rev B 69:144113

    Article  Google Scholar 

  30. Hirel P (2015) Atomsk: a tool for manipulating and converting atomic data files. Comput Phys Commun 197:212–219

    Article  CAS  Google Scholar 

  31. Kalibaeva G, Ferrario M, Ciccotti G (2003) Constant pressure-constant temperature molecular dynamics: a correct constrained NPT ensemble using the molecular virial. Mol Phys 101(6):765–778

    Article  CAS  Google Scholar 

  32. Nazareth J (2009) Conjugate gradient method. Wiley Interdisciplinary Reviews: Comput Stat 1(3):348–353

    Article  Google Scholar 

  33. Belak J (1998) On the nucleation and growth of voids at high strain-rates. J Comp-Aid Mater Des 5(2–3):193–206

    Article  CAS  Google Scholar 

  34. Tang Y, Bringa EM, Meyers MA (2012) Ductile tensile failure in metals through initiation and growth of nanosized voids. Acta Mate 60:4856–4865

    Article  CAS  Google Scholar 

  35. Sadeghzadeh S (2018) Effects of vacancies and divacancies on the failure of C3N nanosheets. Diam Relat Mater 89:257–265

    Article  CAS  Google Scholar 

  36. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model Simul Mat Sci Eng 18:015012

    Article  Google Scholar 

  37. Chen P, Zhang Z, Liu C, An T, Yu H, Qin F (2019) Temperature and grain size dependences of mechanical properties of nanocrystalline copper by molecular dynamics simulation. Model Simul Mat Sci Eng 27:065012

    Article  CAS  Google Scholar 

  38. Antoun T, Seaman L, Kanel D, Razorenov G (2003) Spall fracture. Springer, New York

    Google Scholar 

  39. Lubarda V, Schneider M, Kalantar D, Remington B, Meyers M (2004) Void growth by dislocation emission. Acta Mater 52:1397–1408

    Article  CAS  Google Scholar 

  40. Meyers M, Aimone C (1983) Dynamic fracture (spalling) of metals. (1983) Prog Mater Sci 28:1–96

    CAS  Google Scholar 

  41. Li Z, Gao Y, Zhan S, Fang H, Zhang Z (2020) Molecular dynamics study on temperature and strain rate dependences of mechanical properties of single crystal Al under uniaxial loading. AIP Adv 10:075321

    Article  CAS  Google Scholar 

  42. Turnage SA, Rajagopalan M, Darling KA, Garg P, Kale C, Bazehhour B (2018) Anomalous mechanical behavior of nanocrystalline binary alloys under extreme conditions. Nat Commun 9:2699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang W, Ma Y, Yang M, Jiang P, Yuan F, Wu X (2018) Strain rate effect on tensile behavior for a high specific strength steel: from quasi-static to intermediate strain rates. Metals 8(1):11

    Article  Google Scholar 

  44. Wang W, Yi C, Fan K (2013) Molecular dynamics study on temperature and strain rate dependences of mechanical tensile properties of ultrathin nickel nanowires. Trans Nonferrous Met Soc 23:3353–3361

    Article  CAS  Google Scholar 

  45. Yu R, Zhai P, Li G, Liu L (2012) Molecular dynamics simulation of the mechanical properties of single-crystal bulk Mg2Si. J Electron Mater 41:1465–1469

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design of the study. Mahesh Kumar Gupta: methodology, software, investigation, writing—original draft. Vinay Panwar: conceptualization, writing—review and editing, supervision, project administration. Rajendra Prasad Mahapatra: validation, formal analysis, supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vinay Panwar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, M.K., Panwar, V. & Mahapatra, R.P. Computational analysis of mechanical behavior and potential energy of thermoresponsive copper-tantalum nanoalloy. J Mol Model 28, 187 (2022). https://doi.org/10.1007/s00894-022-05183-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05183-y

Keywords

Navigation