Skip to main content
Log in

Theoretical and experimental evaluation of screen-printed tubular carbon ink disposable sensor well electrodes by dc and Fourier transformed ac voltammetry

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Mass-produced, screen-printed, carbon-ink-based microtubular band (well) electrodes, suitable for routine sensing applications, have been fabricated and evaluated with respect to their theoretical and analytical performance. Microscopic examination of the electrode surface reveals they are inherently rough and could easily suffer from high and variable resistance, capacitance and area, unless care is taken to minimise these problems. Simulation models have been applied to analyse cyclic voltammetric responses obtained at the well electrodes. Results of these theoretical calculations further demonstrate the care needed with electrode design and resistance in carbon ink electrodes. Substantial differences in voltammetry when wells are produced by mechanically punching or laser drilling are considered. The application of multi- and single-frequency Fourier Transform ac voltammetry, previously applied to planar carbon ink disc electrodes for quality control purposes, is now demonstrated with respect to the microtubular band electrode geometry. Theoretical and practical limitations are discussed, as is the analytical application to the reversible \(\left[ {{\text{Ru}}\left( {{\text{NH}}_3 } \right)_6 } \right]^{3 + } + e^ - \rightleftharpoons \left[ {{\text{Ru}}\left( {{\text{NH}}_3 } \right)_6 } \right]^{2 + } \) redox couple in the presence of oxygen in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Galan-Vidal CA, Munoz J, Dominguez C, Alegret S (1995) TrAC trends. Anal Chem 14:225–231

    CAS  Google Scholar 

  2. Wang J (2002) TrAC trends. Anal Chem 21:226–232

    CAS  Google Scholar 

  3. Hart JP, Wring SA (1994) Electroanalysis 6:617–624. doi:10.1002/elan.1140060802

    Article  CAS  Google Scholar 

  4. Hart JP, Crew A, Crouch E, Honeychurch KC, Pemberton RM (2004) Anal Lett 37:789–830. doi:10.1081/AL-120030682

    Article  CAS  Google Scholar 

  5. Green MJ, Hilditch PI (1991) Anal Proc 28:374–376

    CAS  Google Scholar 

  6. Kovach PM, Caudill WL, Peters DG, Wightman RM (1985) J Electroanal Chem Interfacial Electrochem 185:285–295. doi:10.1016/0368-1874(85)80136-2

    Article  CAS  Google Scholar 

  7. Wightman RM (1988) Science 240:415–420. doi:10.1126/science.240.4851.415

    Article  CAS  Google Scholar 

  8. Bond AM, Luscombe D, Oldham KB, Zoski CG (1988) J Electroanal Chem 249:1–14. doi:10.1016/0022-0728(88)80345-0

    Article  CAS  Google Scholar 

  9. Hyland M, Lorimer K, Dobson PJ, Askew HF (2005) Micro-band electrode manufacturing method. WO2005121762

  10. Hyland M, Lorimer K, Wedge CR, Broughall JM, Butler RN (2006) Method of manufacturing an electrochemical sensor. US20060008581

  11. Ball JC, Scott DL, Lumpp JK, Daunert S, Wang J, Bachas LG (2000) Anal Chem 72:497–501. doi:10.1021/ac991163c

    Article  CAS  Google Scholar 

  12. Ball JC, Lumpp JK, Daunert S, Bachas LG (2000) Electroanalysis 12:685–690. doi:10.1002/1521-4109(200005)12:9<685::AID-ELAN685>3.0.CO;2-8

    Article  CAS  Google Scholar 

  13. Hyland M, Lorimer K, Butler RN, Wallace-Davis ENK, Astier Y (2003) Micro-band electrode in conjunction with enzymes and other electro-active substances. WO2003056319

  14. Aoki K, Tanaka M (1989) J Electroanal Chem 266:11–20. doi:10.1016/0022-0728(89)80211-6

    Article  CAS  Google Scholar 

  15. Aoki K (1993) Electroanalysis 5:627–639. doi:10.1002/elan.1140050802

    Article  CAS  Google Scholar 

  16. Porat Z, Crooker JC, Zhang Y, Mest YL, Murray RW (1997) Anal Chem 69:5073–5081. doi:10.1021/ac970803d

    Article  CAS  Google Scholar 

  17. Engblom SO, Cope DK, Tallman DE (1996) J Electroanal Chem 406:23–31. doi:10.1016/0022-0728(95)04446-9

    Article  Google Scholar 

  18. Amatore CA, Fosset B, Deakin MR, Wightman RM (1987) J Electroanal Chem 225:33–48. doi:10.1016/0022-0728(87)80003-7

    Article  CAS  Google Scholar 

  19. Deakin MR, Wightman RM, Amatore CA (1986) J Electroanal Chem 215:49–61. doi:10.1016/0022-0728(86)87004-8

    Article  CAS  Google Scholar 

  20. Harris A, Zhang J, Konash A, Elton D, Hyland M, Bond A (2008) J Solid State Electrochem 12:1301–1315. doi:10.1007/s10008-008-0524-4

    Article  CAS  Google Scholar 

  21. Hyland M (2006) Electrode for electrochemical sensor. WO2006000828

  22. Bond AM, Duffy N, Guo S, Zhang J, Elton D (2005) Anal Chem 77:186A–195A

    Article  CAS  Google Scholar 

  23. Rudolph M, Reddy DP, Feldberg SW (1994) Anal Chem 66:A586–A600. doi:10.1021/ac00082a002

    Article  Google Scholar 

  24. Oldham KB, Myland JC (1994) Fundamentals of electrochemical science. Academic, San Diego

    Google Scholar 

  25. Unwin PR, Bard AJ (1991) J Phys Chem 95:7814–7824. doi:10.1021/j100173a049

    Article  CAS  Google Scholar 

  26. Oldham KB (1981) J Electroanal Chem Interfacial Electrochem 122:1–17

    CAS  Google Scholar 

  27. Feldberg SW (1981) J Electroanal Chem Interfacial Electrochem 127:1–10. doi:10.1016/S0022-0728(81)80462-7

    Article  CAS  Google Scholar 

  28. Gavaghan DJ (1998) J Electroanal Chem 456:1–12. doi:10.1016/S0022-0728(98)00239-3

    Article  CAS  Google Scholar 

  29. Brooks BA, Gavaghan DJ, Compton RG (2002) J Phys Chem B 106:4886–4896. doi:10.1021/jp014049i

    Article  Google Scholar 

  30. Sher AA, Bond AM, Gavaghan DJ, Harriman K, Feldberg SW, Duffy NW, Guo S-X, Zhang J (2004) Anal Chem 76:6214–6228. doi:10.1021/ac0495337

    Article  CAS  Google Scholar 

  31. Pontikos NM, McCreery RL (1992) J Electroanal Chem 324:229–242. doi:10.1016/0022-0728(92)80048-9

    Article  CAS  Google Scholar 

  32. Poon M, McCreery RL (1986) Anal Chem 58:2745–2750. doi:10.1021/ac00126a036

    Article  CAS  Google Scholar 

  33. Seddon BJ, Shao Y, Fost J, Giraults HH (1994) Electrochim Acta 39:783–791. doi:10.1016/0013-4686(93)E0038-N

    Article  CAS  Google Scholar 

  34. Seddon BJ, Osborne MD, Lagger G, Dryfe RAW, Loyall U, Schaefer H, Girault HH (1997) Electrochim Acta 42:1883–1894. doi:10.1016/S0013-4686(96)00401-X

    Article  CAS  Google Scholar 

  35. Osborne MD, Seddon BJ, Dryfe RAW, Lagger G, Loyal U, Schifer H, Girault HH (1996) J Electroanal Chem 417:5–15. doi:10.1016/S0022-0728(96)04781-X

    Article  CAS  Google Scholar 

  36. Bard AJ, Faulkner LR (2001) Electrochemical methods. Wiley, New York

    Google Scholar 

  37. Morris NA, Cardosi MF, Birch BJ, Turner APF (1992) Electroanalysis 4:1–9. doi:10.1002/elan.1140040104

    Article  CAS  Google Scholar 

  38. Zhang J, Guo SX, Bond AM (2007) Anal Chem 79:2276–2288. doi:10.1021/ac061859n

    Article  CAS  Google Scholar 

  39. Honeychurch MJ, Bond AM (2002) J Electroanal Chem 529:3–11. doi:10.1016/S0022-0728(02)00907-5

    Article  CAS  Google Scholar 

  40. Guo S, Zhang J, Elton DM, Bond AM (2004) Anal Chem 76:166–177. doi:10.1021/ac034901c

    Article  CAS  Google Scholar 

  41. Hibbert DB, Gooding JJ (2006) Data analysis for chemistry. Oxford University Press, New York

    Google Scholar 

  42. O’Mullane AP, Zhang J, Brajter-Toth A, Bond AM (2008) Anal Chem 80:4614–4626. doi:10.1021/ac0715221

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge Stephen Feldberg for his helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan M. Bond.

Additional information

Dedicated to Keith on his 80th birthday, a good friend and colleague.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konash, A., Harris, A.R., Zhang, J. et al. Theoretical and experimental evaluation of screen-printed tubular carbon ink disposable sensor well electrodes by dc and Fourier transformed ac voltammetry. J Solid State Electrochem 13, 551–563 (2009). https://doi.org/10.1007/s10008-008-0751-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0751-8

Keywords

Navigation