Skip to main content
Log in

The electro-oxidation of carbon monoxide and ethanol on supported Pt nanoparticles: the influence of the support and catalyst microstructure

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The sluggish kinetics of ethanol oxidation on Pt-based electrodes is one of the major drawbacks to its use as a liquid fuel in direct ethanol fuel cells, and considerable efforts have been made to improve the reaction kinetics. Herein, we report an investigation on the effect of the Pt microstructure (well-dispersed versus agglomerated nanoparticles) and the catalyst support (carbon Vulcan, SnO2, and RuO2) on the rate of the electrochemical oxidation of ethanol and its major adsorbed intermediate, namely, carbon monoxide. By using several structural characterization techniques such as X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy, along with potentiodynamic and potentiostatic electrochemical experiments, we show that by altering both the Pt microstructure and the support, the rate of the electrochemical oxidation of ethanol can be improved up to a factor of 12 times compared to well-dispersed carbon-supported Pt nanoparticles. As a result of a combined effect, the interaction of Pt agglomerates with SnO2 yielded the highest current densities among all materials studied. The differences in the activity are discussed in terms of structural and electronic properties as well as by mass transport effects, providing valuable insights to the development of more active materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vielstich W, Paganin VA, Alves OB, Ciapina EG (2009) On the pathways of methanol and ethanol oxidation. In: Vielstich W, Yokokawa H, Gasteiger HA (eds) Handbook of fuel cells—fundamentals, technology and applications, vol 5. Wiley, Chichester, pp 174–183

    Google Scholar 

  2. Antolini E (2007) J Power Sources 170:1–12

    Article  CAS  Google Scholar 

  3. Lima FHB, Gonzalez ER (2008) Electrochim Acta 53:2963–2971

    Article  CAS  Google Scholar 

  4. Colmati F, Antolini E, Gonzalez ER (2007) Appl Catal, B 73:106–115

    Article  CAS  Google Scholar 

  5. Camara GA, de Lima RB, Iwasita T (2004) Electrochem Comm 6:812–815

    Article  CAS  Google Scholar 

  6. Lima FHB, Gonzalez ER (2008) Appl Catal, B 79:341–346

    Article  CAS  Google Scholar 

  7. Colmati F, Tremiliosi-Filho G, Gonzalez ER, Berna A, Herrero E, Feliu JM (2008) Faraday Discuss 140:379–397

    Article  CAS  Google Scholar 

  8. Cherstiouk OV, Simonov PA, Savinova ER (2003) Electrochim Acta 48:3851–3860

    Article  CAS  Google Scholar 

  9. Ciapina EG, Santos SF, Gonzalez ER (2010) J Electroanal Chem 644:132–143

    Article  CAS  Google Scholar 

  10. Antolini E, Colmati F, Gonzalez ER (2009) J Power Sources 193:555–561

    Article  CAS  Google Scholar 

  11. Godoi DRM, Perez J, Villullas HM (2010) J Power Sources 195:3394–3401

    Article  CAS  Google Scholar 

  12. Bock C, Blakely M-A, MacDougall B (2005) Electrochim Acta 50:2401–2414

    Article  CAS  Google Scholar 

  13. Henderson MA (2002) Surf Sci Rep 46:1–308

    Article  CAS  Google Scholar 

  14. Villullas HM, Mattos-Costa FI, Nascente PAP, Bulhões LOS (2004) Electrochim Acta 49:3909–3916

    Article  CAS  Google Scholar 

  15. Villullas HM, Mattos-Costa FI, Bulhões LOS (2004) J Phys Chem B 108:12898–12903

    Article  CAS  Google Scholar 

  16. Pinheiro ALN, Zei MS, Ertl G (2005) Phys Chem Chem Phys 7:1300–1309

    Article  CAS  Google Scholar 

  17. Ciapina EG, Gonzalez ER (2009) J Electroanal Chem 626:130–142

    Article  CAS  Google Scholar 

  18. Ciapina EG, Carbonio EA, Colmati F, Gonzalez ER (2008) J Power Sources 175:18–25

    Article  CAS  Google Scholar 

  19. Suryanarayana C, Norton MG (1998) X-ray diffraction: a practical approach. Plenum, New York, p 161

    Google Scholar 

  20. Ravel B, Newville M (2005) J Synchrotron Radiat 12:537–541

    Article  CAS  Google Scholar 

  21. Russell AE, Rose A (2004) Chem Rev 104:4613–4635

    Article  CAS  Google Scholar 

  22. Schimdt TJ, Gasteiger HA (2003) In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells—fundamentals, technology and applications, vol 2. Chichester, Wiley

    Google Scholar 

  23. Schmidt TJ, Gasteiger HA, Stab GD, Urban PM, Kolb DM, Behm RJ (1998) J Electrochem Soc 145:2354–2358

    Article  CAS  Google Scholar 

  24. Camara GA, Iwasita T (2005) J Electroanal Chem 578:315–321

    Article  CAS  Google Scholar 

  25. Sousa R Jr, Colmati F, Ciapina EG, Gonzalez ER (2007) J Solid State Electrochem 11:1549–1557

    Article  CAS  Google Scholar 

  26. Allen PG, Conradson SD, Wilson MS, Gottesfeld S, Raistrick ID, Valerio J, Lovato M (1995) J Electroanal Chem 384:99–103

    Article  Google Scholar 

  27. Tarasevich MR, Bogdanovskaya VA, Zagudaeva NM (1987) J Electroanal Chem 223:161–169

    Article  CAS  Google Scholar 

  28. Trasatti S, Buzzanca G (1971) J Electroanal Chem App 29:1–5

    Article  CAS  Google Scholar 

  29. Bai LJ, Conway BE (1991) J Electrochem Soc 138:1539–1548

    Article  Google Scholar 

  30. Iwasita T, Ciapina EG (2009) Mechanistic aspects of carbon monoxide oxidation. In: Vielstich W, Yokokawa H, Gasteiger HA (eds) Handbook of fuel cells—fundamentals, technology and applications, vol 5. Wiley, New York, pp 224–240, Chapter 14

    Google Scholar 

  31. Lai SCS, Lebedeva NP, Housmans THM, Koper MTM (2007) Top Catal 46:320–333

    Article  CAS  Google Scholar 

  32. Zhuang L, Jin J, Abruna HD (2007) J Am Chem Soc 129:11033–11035

    Article  CAS  Google Scholar 

  33. Wang H, Jusys Z, Behm RJ (2004) J Phys Chem 108:19413–19424

    CAS  Google Scholar 

  34. Zhou ZY, Huang ZZ, Chen DJ, Wang Q, Tian N, Sun SG (2010) Angew Chem Int Ed 49:411–414

    Article  CAS  Google Scholar 

  35. Gontard LC, Chang LY, Hetherington CJD, Kirkland AI, Ozkaya D, Dunin-Borkowski RE (2007) Angew Chem Int Ed 46:3683–3685

    Article  CAS  Google Scholar 

  36. Gojkovic SL (2004) J Electroanal Chem 573:271–276

    Article  CAS  Google Scholar 

  37. Seidel YE, Scheneider A, Jusys Z, Wickman B, Kasemo B, Behm RJ (2010) Langmuir 26:3569–3578

    Article  CAS  Google Scholar 

  38. Seidel YE, Scheneider A, Jusys Z, Wickman B, Kasemo B, Behm RJ (2008) Faraday Discuss 140:167–184

    Article  CAS  Google Scholar 

  39. Lindström RW, Seidel YE, Jusys Z, Gustavsson M, Wickman B, Kasemo B, Behm RJ (2010) J Electroanal Chem 644:90–102

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian funding agencies FAPESP, CAPES, and CNPq for financial assistance. EGC would like to acknowledge FAPESP for the fellowships. The authors also thank the Brazilian Synchrotron Light laboratory (LNLS) for X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) beam line facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo G. Ciapina.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting Information

Figures of EXAFS oscillations isolated from the XAS spectra, full CO striping curves and the corresponding charges involved in the CO electrochemical oxidation reaction are provided in the Supporting Information. (DOC 714 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciapina, E.G., Santos, S.F. & Gonzalez, E.R. The electro-oxidation of carbon monoxide and ethanol on supported Pt nanoparticles: the influence of the support and catalyst microstructure. J Solid State Electrochem 17, 1831–1842 (2013). https://doi.org/10.1007/s10008-013-2120-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2120-5

Keywords

Navigation