Skip to main content
Log in

Influence of alkaline cation on the electrochemical behavior of stabilized alpha-Ni(OH)2

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Cyclic voltammograms of nanostructured nickel hydroxide modified platinum disk electrodes were interpreted as combinations of the contribution of alpha and beta-phase materials in different proportions. The electrolyte cation influenced more significantly the cathodic wave profile, where KOH seems to decrease the discharge rate more than NaOH and LiOH. Unexpectedly, the heat treatment does not seem to be required to get stabilized alpha-Ni(OH)2. Reproducible charge–discharge responses and up to 2.45 times higher specific charge capacity (490 mA h g−1) were registered for nanostructured α-NiII(OH)2 after 100 charge–discharge cycles, suggesting that they are stable enough for application in electrochemical devices such as batteries and sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fu GR, Hu ZA, Xie LJ, Jin XQ, Xie YL, Wang Y-X, Zhang Z-Y, Yang Y-Y, Wu H-Y (2009) Int J Electrochem Sci 4:1052–1062

    CAS  Google Scholar 

  2. Sakai G, Miyazaki M, Kijima T (2010) J Electrochem Soc 157:A932–A939

    Article  CAS  Google Scholar 

  3. Vidotti M, Greco C, Ponzio EA, Torresi SIC (2006) Electrochem Commun 8:554–560

    Article  CAS  Google Scholar 

  4. Liu H, Yan G, Liu F, Zhong Y, Feng B (2009) J Alloys Compd 481:385–389

    Article  CAS  Google Scholar 

  5. Wang C, Yin L, Zhang L, Gao R (2010) J Phys Chem C 114:4408–4413

    Article  CAS  Google Scholar 

  6. Wang D, Yan W, Vijapur SH, Botte GG (2012) J Power Sources 217:498–502

    Article  CAS  Google Scholar 

  7. Wang H, Zhou S, Wang Z, Xu S, Dong S, Miao Y (2012) Electrochim Acta 74:201–206

    Article  CAS  Google Scholar 

  8. Yan W, Wang D, Botte GG (2012) Electrochim Acta 61:25–30

    Article  CAS  Google Scholar 

  9. Yao J, Li Y, Zhu Y, Wang H (2013) J Power Sources 224:236–240

    Article  CAS  Google Scholar 

  10. Vedharathinam V, Botte GG (2013) Electrochim Acta 108:660–665

    Article  CAS  Google Scholar 

  11. Zhang WD, Chen J, Jiang LC, Yu YX, Zhang JQ (2010) Microchim Acta 68:259–265

    Article  Google Scholar 

  12. Bode H, Delmelt K, Witte J (1966) Electrochim Acta 11:1079–1087

    Article  CAS  Google Scholar 

  13. Cabanas-Polo S, Suslick KS, Sanchez-Herencia AJ (2011) Ultrason Sonochem 18:901–906

    Article  CAS  Google Scholar 

  14. Yanwei L, Jinhuan Y, Yanxi Z, Zhengguang Z, Hongbo W (2012) J Power Sources 203:177–183

    Article  Google Scholar 

  15. Liu L, Zhou Z, Peng C (2008) Electrochim Acta 54:434–440

    Article  CAS  Google Scholar 

  16. Rocha MA, Winnischofer H, Araki K, Anaissi FJ, Toma HT (2011) J Nanosci Nanotechnol 11:3985–3996

    Article  CAS  Google Scholar 

  17. Rocha MA, Anaissi FJ, Toma HE, Araki K, Winnischofer H (2009) Mater Res Bull 44:970–976

    Article  CAS  Google Scholar 

  18. Cheng M-Y, Hwang B-J (2007) Nanoscale Res Lett 2:28–33

    Article  CAS  Google Scholar 

  19. Martins PR, Toma ST, Nakamura M, Toma HE, Araki K (2013) RSC Adv 3:20261–20266

    Article  CAS  Google Scholar 

  20. Rajamathi M, Kamath PV, Seshadri R (2000) J Mater Chem 10:503–506

    Article  CAS  Google Scholar 

  21. Audemer A, Delahaye A, Farhi R, Saceppe N, Tarascon JM (1997) J Electrochem Soc 144:2614–2620

    Article  CAS  Google Scholar 

  22. Oliva P, Leonardi J, Laurent JF (1982) J Power Sources 8:229–255

    Article  CAS  Google Scholar 

  23. Corrigan DA, Bendert RM (1989) J Electrochem Soc 136:723–728

    Article  CAS  Google Scholar 

  24. Barnard R, Randell CF, Tye FL (1980) J Appl Electrochem 10:109–125

    Article  CAS  Google Scholar 

  25. Fu XZ, Wang X, Xu QC, Li J, Xu JQ, Lin JD, Liao DW (2007) Electrochim Acta 52:2109–2114

    Article  CAS  Google Scholar 

  26. Faure C, Delmas C, Fouassier M (1991) J Power Sources 35:279–290

    Article  CAS  Google Scholar 

  27. Hu ZA, Xie YL, Wang YX, Wu HY, Yang YY, Zhang ZY (2009) Electrochim Acta 54:2737–2741

    Article  CAS  Google Scholar 

  28. Torresi SIC (1995) Electrochim Acta 40:1101–1111

    Article  Google Scholar 

  29. Sood JAK (1986) J Appl Electrochem 16:274–280

    Article  CAS  Google Scholar 

  30. Torresi SIC, Provazi K, Malta M, Torresi RM (2001) J Electrochem Soc 148:1179–1184

    Article  Google Scholar 

  31. Lia YW, Yao BJH (2010) Int J Hydrogen Energy 35:2539–2545

    Article  Google Scholar 

  32. Bing L, Huatang Y, Yunshi Z, Zuoxiang Z, Deying S (1999) J Power Sources 79:277–280

    Article  CAS  Google Scholar 

  33. Li Y, Xie X, Liu J, Cai M, Rogers J, Shen W (2008) J Chem Eng 136:398–407

    Article  CAS  Google Scholar 

  34. Da Silva RM, Dias Ângelo CA, Dall’ Antonia LH (2010) Quim Nova 33:2027–2031

    Article  Google Scholar 

  35. Provazi K, Giz MJ, Dall’Antonia LH, Cordoba TSI (2001) J Power Sources 102:224–230

    Article  CAS  Google Scholar 

  36. Vidotti M, Salvador RP, Torresi CIC (2009) Ultrason Sonochem 16:35–40

    Article  CAS  Google Scholar 

  37. Martins PR, Parussulo ALA, Toma ET, Rocha MA, Toma HE, Araki K (2012) J Power Sources 218:1–4

    Article  CAS  Google Scholar 

  38. Cheek GT, O'Grady WE (1990) J Electroanal Chem 277:341–346

    Article  CAS  Google Scholar 

  39. Cheek GT, O’Grady WE (1997) J Electroanal Chem 421:173–177

    Article  CAS  Google Scholar 

  40. Varela H, Malta M, Torresi RM (2000) Quim Nova 23:664–679

    Article  CAS  Google Scholar 

  41. Brett CMA, Brett AMO (1993) Electrochemistry: principles, methods and applications. Oxford University Press, Oxford, pp 1–427

    Google Scholar 

  42. Tehrani RMA, Ghani AS (2012) Electrochim Acta 70:153–157

    Article  CAS  Google Scholar 

  43. Simões M, Baranton S, Coutanceau C (2010) Appl Catal B 93:354–362

    Article  Google Scholar 

  44. Razmi H, Habibi ES, Heidari H (2008) Electrochim Acta 53:8178–8185

    Article  CAS  Google Scholar 

  45. Li Y, Yao J, Zhu Y, Zou Z, Wang H (2012) J Power Sources 203:177–183

    Article  CAS  Google Scholar 

  46. Su L, Gong L, Gao J (2012) J Power Sources 209:141–146

    Article  CAS  Google Scholar 

  47. Qingfeng Y, Jingjing Z, Wu H, Xiaoping L (2007) Catal Commun 8:1017–1022

    Article  Google Scholar 

  48. Qingfeng Y, Wu H, Jingjing Z, Xiaoping L, Lei L (2007) J Electroanal Chem 610:163–170

    Article  Google Scholar 

  49. Yuan G, Huang K, Liu S, Li Y, Wang H (2010) J Power Sources 195:5094–5098

    Article  CAS  Google Scholar 

  50. Kiani MA, Mousavis MF, Ghasemi S (2010) J Power Sources 195:5794–5800

    Article  CAS  Google Scholar 

  51. Wang X, Sebastian PJ, Millan AC, Parkhutik PV, Gamboa SA (2005) J New Mater Electrochem Syst 8:101–105

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Brazilian agencies Capes, CNPq (PNPD 1456/2013), FINEP, and Fundação Araucária (Pronex-116-2010/17378) was greatly appreciated. The authors also wish to thank the Brazilian Synchrotron Light Laboratory (LNLS) for the use of the XRD-1 line and the Brazilian National Nanotechnology Laboratory (LNNano) for the SEM images. M. Danczuk and C.V. Nunes Jr. also would like to express their gratitude to the DS/Capes agency for the Ph.D. scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fauze Jacó Anaissi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1

(DOC 939 kb)

Table 1

(DOC 55 kb)

Table 2

(DOC 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danczuk, M., Nunes, C.V., Araki, K. et al. Influence of alkaline cation on the electrochemical behavior of stabilized alpha-Ni(OH)2 . J Solid State Electrochem 18, 2279–2287 (2014). https://doi.org/10.1007/s10008-014-2478-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2478-z

Keywords

Navigation