Skip to main content
Log in

Sonochemical synthesis of graphene oxide supported Pt–Pd alloy nanocrystals as efficient electrocatalysts for methanol oxidation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Pt–Pd bimetallic nanoparticles supported on graphene oxide (GO) nanosheets were prepared by a sonochemical reduction method in the presence of polyethylene glycol as a stabilizing agent. The synthetic method allowed for a fine tuning of the particle composition without significant changes in their size and degree of aggregation. Detailed characterization of GO-supported Pt–Pd catalysts was carried out by transmission electron microscopy (TEM), AFM, XPS, and electrochemical techniques. Uniform deposition of Pt–Pd nanoparticles with an average diameter of 3 nm was achieved on graphene nanosheets using a novel dual-frequency sonication approach. GO-supported bimetallic catalyst showed significant electrocatalytic activity for methanol oxidation. The influence of different molar compositions of Pt and Pd (1:1, 2:1, and 3:1) on the methanol oxidation efficiency was also evaluated. Among the different Pt/Pd ratios, the 1:1 ratio material showed the lowest onset potential and generated the highest peak current density. The effect of catalyst loading on carbon paper (working electrode) was also studied. Increasing the catalyst loading beyond a certain amount lowered the catalytic activity due to the aggregation of metal particle-loaded GO nanosheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thanasilp S, Hunsom M (2011) Electrochim Acta 56:1164–1171

    Article  CAS  Google Scholar 

  2. Seo MH, Choi SM (2011) Kim HJ, KimWB. Electrochem Commun 13:182–185

    Article  CAS  Google Scholar 

  3. Housmans THM, Feliu JM, Gómez R, Koper MTM (2005) ChemPhysChem 6:1522–1529

    Article  CAS  Google Scholar 

  4. Gómez R, Solla-Gullón J, Pérez JM, Aldaz A (2005) J Raman Spectros 36:613–622

    Article  Google Scholar 

  5. Yoo E, Okata T, Akita T, Kohyama M, Nakamura J, Honma I (2009) Nano Lett 9:2255–2259

    Article  CAS  Google Scholar 

  6. de Dios FJ G, Gómez R, Feliu JM (2001) Electrochem Commun 3:659–664

    Article  Google Scholar 

  7. Alcaide F, Álvarez G, Cabot PL, Grande H-J, Miguel O, Querejeta A (2011) Int J Hydrogen Energ 36:4532–4539

    Google Scholar 

  8. Lee CL, Chiou HP, Wu SC, Wu CC (2010) Electrochim Acta 56:687–692

    Article  CAS  Google Scholar 

  9. Deivaraj TC, Lee JY (2005) J Power Sources 142:43–49

    Article  CAS  Google Scholar 

  10. Basnayake R, Li Z, Katar S, Zhou W, Rivera H, Smotkin ES, Casadonte DJ, Korzeniewski C (2006) Langmuir 22:10456–10450

    Article  Google Scholar 

  11. Gutiérrez de Dios FJ, Gómez R, Feliu JM (2005) Langmuir 21:7439–7458

    Article  Google Scholar 

  12. XueX GL, Cao X, Song Y, Zhu L, Chen P (2009) J Solid State Chem 182:2912–2917

    Article  Google Scholar 

  13. Page T, Johnson R, Hormes J, Noding S, Rambabu B (2000) J Electroanal Chem 485:34–41

    Article  CAS  Google Scholar 

  14. Yang J, Tian C, Wang L, Fu H (2011) J Mater Chem 21:3484–3390

    Google Scholar 

  15. Łukaszewski M, Czerwiński A (2006) J Electroanal Chem 589:38–45

    Article  Google Scholar 

  16. Liu Y, Chi M, Mazumder V, More KL, Soled S, Henao JD, Sun S (2011) Chem Mater 23:4199–4203

    Article  CAS  Google Scholar 

  17. Girishkumar G, Hall TD, Vinodgopal K, Kamat PV (2006) J Phys Chem B 110:107–114

    Article  CAS  Google Scholar 

  18. Kamat PV (2007) J Phys Chem C 111:2834–2860

    Article  CAS  Google Scholar 

  19. Neppolian B, Bruno A, Bianchi CL, Grieser F, Ashokkumar M (2012) Ultrason Sonochem 19:9–15

    Article  CAS  Google Scholar 

  20. Kamat PV (2010) J Phys Chem Lett 1:520–527

    Article  CAS  Google Scholar 

  21. Kamat PV (2011) J Phys Chem Lett 2:242–251

    Article  CAS  Google Scholar 

  22. Vinodgopal K, Neppolian B, Lightcap IV, Grieser F, Ashokkumar M, Kamat PV (2010) J Phys Chem Lett 1:1987–1993

    Article  CAS  Google Scholar 

  23. Seger B, Kamat PV (2009) J Phys Chem C 113:7990–7995

    Article  CAS  Google Scholar 

  24. Lightcap IV, Kosel TH, Kamat PV (2010) Nano Lett 10:577–583

    Article  CAS  Google Scholar 

  25. Williams G, Seger B, Kamat PV (2008) ACS Nano 2:1487–1491

    Article  CAS  Google Scholar 

  26. Williams G, Kamat PV (2009) Langmuir 25:13869–13873

    Article  CAS  Google Scholar 

  27. Zhang H, Lv X, Li Y, Wang Y, Li J (2010) ACS Nano 4:380–386

    Article  CAS  Google Scholar 

  28. Rao CNR, Sood AK, Voggu R, Subrahmanyam KS (2010) J Phys Chem Lett 1:572–580

    Article  CAS  Google Scholar 

  29. Vinodgopal K, He Y, Ashokkumar M, Grieser F (2006) J Phys Chem B 110:3849–3852

    Article  CAS  Google Scholar 

  30. Okitsu K, Ashokkumar M, Grieser F (2005) J Phys Chem B 109:20673–20675

    Article  CAS  Google Scholar 

  31. Shi JJ, Yang GH, Zhu JJ (2011) J Mater Chem 21:7343–7349

    Article  CAS  Google Scholar 

  32. Neppolian B, Celik E, Anpo M, Choi H (2008) Catal Lett 125:183–184

    Article  CAS  Google Scholar 

  33. Neppolian B, Kim Y, Ashokkumar M, Yamashita H, Choi H (2010) J Hazard Mater 182:557–562

    Article  CAS  Google Scholar 

  34. Neppolian B, Doronila A, Ashokkumar M, Grieser F (2009) Environ Sci Technol 43:6793–6798

    Article  CAS  Google Scholar 

  35. Kanthale P, Ashokkumar M, Grieser F (2008) Ultrason Sonochem 15:143–150

    Article  CAS  Google Scholar 

  36. Neppolian B, Doronila A, Ashokkumar M (2010) Water Res 45:3687–3695

    Article  Google Scholar 

  37. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  38. Ashokkumar M, Sunartio D, Kentish S, Mawson R, Simons L, Vilkhu K, Versteeg C (2008) Innovat Food Sci Emerg Tech 9:155–160

    Article  CAS  Google Scholar 

  39. Janata E, Henglein A, Ershov B (1996) J Phys Chem 100:1989–1992

    Article  CAS  Google Scholar 

  40. Vasilyeva SV, Vorotyntsev MA, Bezverkhyy I, Lesniewska E, Heintz O, Chassagnon R (2008) J Phys Chem C 112:19878–19885

    Article  CAS  Google Scholar 

  41. Henglein A, Mulvaney P, Linnert T, Holzwarth A (1992) J Phys Chem 96:2411–2411

    Article  CAS  Google Scholar 

  42. Grden M, Paruszewska A, Czerwinski A (2001) J Electroanal Chem 502:91–99

    Article  CAS  Google Scholar 

  43. Łukaszewski M, Czerwiński A (2006) Electrochim Acta 51:4728–4735

    Article  Google Scholar 

  44. Hubkowska K, Łukaszewski M, Czerwiński A (2011) Electrochim Acta 56:2345–2350

    Article  Google Scholar 

  45. Łukaszewski M, Czerwiński A (2006) J Solid State Electrochem 15:2489–2522

    Article  Google Scholar 

  46. Chaparro AM, Martín AJ, Folgado MA, Gallardo B, Daza L (2009) Int J Hydrogen Energ 34:4838–4846

    Article  CAS  Google Scholar 

  47. Chen D, Tao Q, Liao LW, Liu SX, Chen YX, Ye S (2011) Electrocatal 2:207–219

    Article  CAS  Google Scholar 

  48. Jerkiewicz G, Vatankhah G, Tanaka S, Lessard J (2011) Langmuir 27:4220–4226

    Article  CAS  Google Scholar 

  49. Kakade BA, Tamaki T, Ohashi H, Yamaguchi T (2012) J Phys Chem C 116:7464–7460

    Article  CAS  Google Scholar 

  50. Łukaszewski M, Czerwiński A (2010) Thin Solid Films 518:3680–3689

    Article  Google Scholar 

  51. Liu L, Samjeske G, Nagamatsu S, Sekizawa O, Nagasawa K, Takao S, Imaizumi Y, Yamamoto T, Uruga T, Iwasawa Y (2012) J Phys Chem C 116:23453–23464

    Article  CAS  Google Scholar 

  52. Slanac DA, Li L, Mayoralf A, Yacaman MJ, Manthiram A, Stevenson KJ, Johnston KP (2012) Electrochim Acta 64:35–45

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Australian Research Council (ARC). The financial supports of the Spanish Ministry of Economy and Competitiveness through the Spanish–Indian bilateral project PRI-PIBIN-2011-0816, and SERB (SR/FT/CS-127/2011), DST, New Delhi, India, are also gratefully acknowledged. Dr. José González-García passed away before this article could be submitted for publication. We want to express our appreciation for him being a great coworker and friend.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roberto Gómez or Muthupandian Ashokkumar.

Additional information

José González-García—deceased.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 531 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neppolian, B., Sáez, V., González-García, J. et al. Sonochemical synthesis of graphene oxide supported Pt–Pd alloy nanocrystals as efficient electrocatalysts for methanol oxidation. J Solid State Electrochem 18, 3163–3171 (2014). https://doi.org/10.1007/s10008-014-2562-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2562-4

Keywords

Navigation