Skip to main content
Log in

Oxygen reduction activity and methanol tolerance of carbon-supported PtV nanoparticles and the effects of heat treatment at low temperatures

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This paper reports on oxygen reduction activity and methanol tolerance of PtV/C prepared by a polyol method and the effects of heat treatments in reducing environments at low temperatures (up to 300 °C). The as-prepared catalyst showed a low content of alloyed vanadium, but it was considerably more active for the oxygen reduction reaction than Pt/C and had superior methanol tolerance. Dispersive X-ray absorption spectroscopy measurements around the Pt L3 edge indicated that the presence of vanadium in the catalyst increased the Pt 5d-band vacancy at the time that it seems to diminish the Pt coverage by adsorbed OH species. Heat treatments at 150, 200, and 300 °C carried out in strongly reducing conditions produced minor changes in the degree of alloying together with a moderate particle growth. The largest incorporation of vanadium in the alloyed phase was observed after heating at 150 °C while a decrease in the alloying and Pt segregation to the surface were observed for higher treatment temperatures. In general, heat treatments were detrimental for oxygen reduction activity, suggesting that the presence of vanadium oxides might play a role. In addition, the decreased in methanol tolerance might be associated to Pt segregation to the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Srinivasan S (2006) Fuel cells: from fundamentals to applications, 1st edn. Springer, New York

    Google Scholar 

  2. Alonso-Vante N (2010) Platinum and Non-platinum nanomaterials for the molecular oxygen reduction reaction. ChemPhysChem 11:2732–2744

    Article  CAS  Google Scholar 

  3. Pires FI, Villullas HM (2012) Pd-based catalysts: influence of the second metal on their stability and oxygen reduction activity. Int J Hydrogen Energ 37:17052–17059

    Article  CAS  Google Scholar 

  4. Antolini E, Salgado JRC, Gonzalez ER (2005) Carbon supported Pt75M25 (M = Co, Ni) alloys as anode and cathode electrocatalysts for direct methanol fuel cells. J Electroanal Chem 580:145–154

    Article  CAS  Google Scholar 

  5. Antolini E, Salgado JRC, Santos LGRA, Garcia G, Ticianelli EA, Pastor E, Gonzalez ER (2006) Carbon supported Pt-Cr alloys as oxygen-reduction catalysts for direct methanol fuel cells. J Appl Electrochem 36:355–362

    Article  CAS  Google Scholar 

  6. Yano H, Kataoka M, Yamashita H, Uchida H, Watanabe M (2007) Oxygen reduction activity of carbon-supported Pt-M (M = V, Ni, Cr, Co, and Fe) alloys prepared by nanocapsule method. Langmuir 23:6438–6445

    Article  CAS  Google Scholar 

  7. Xiong L, Manthiram A (2005) Nanostructured Pt-M/C (M = Fe and Co) catalysts prepared by a microemulsion method for oxygen reduction in proton exchange membrane fuel cells. Electrochim Acta 50:2323–2329

    Article  CAS  Google Scholar 

  8. Antolini E, Salgado JRC, Giz MJ, Gonzalez ER (2005) Effects of geometric and electronic factors on ORR activity of carbon supported Pt-Co electrocatalysts in PEM fuel cells. Int J Hydrogen Energ 30:1213–1220

    Article  CAS  Google Scholar 

  9. Malheiro AR, Perez J, Santiago EI, Villullas HM (2010) The extent on the nanoscale of Pt-skin effects on oxygen reduction and its influence on fuel cell power. J Phys Chem C 114:20267–20271

    Article  CAS  Google Scholar 

  10. Malheiro AR, Perez J, Villullas HM (2010) Dependence on composition of electronic properties and stability of Pt-Fe/C catalysts for oxygen reduction. J Power Sources 195:7255–72586

    Article  CAS  Google Scholar 

  11. Stassi A, D'Urso C, Baglio V, Di Blasi A, Antonucci V, Arico AS, Luna AMC, Bonesi A, Triaca WE (2006) Electrocatalytic behaviour for oxygen reduction reaction of small nanostructured crystalline bimetallic Pt-M supported catalysts. J Appl Electrochem 36:1143–1149

    Article  CAS  Google Scholar 

  12. Carbonio EA, Colmati F, Ciapina EG, Pereira ME, Gonzalez ER (2010) Pt-Cu/C and Pd modified Pt-Cu/C electrocatalysts for the oxygen reduction reaction in direct methanol fuel cells. J Brazil Chem Soc 21:590–602

    Article  CAS  Google Scholar 

  13. Baglio V, Stassi A, Di Blasi A, D'Urso C, Antonucci V, Arico AS (2007) Investigation of bimetallic Pt-M/C as DMFC cathode catalysts. Electrochim Acta 53:1360–1364

    Article  CAS  Google Scholar 

  14. Bing Y, Liu H, Zhang L, Ghosh D, Zhang J (2010) Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem Soc Rev 39:2184–2202

    Article  CAS  Google Scholar 

  15. Jalan V, Taylor EJ (1983) Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric-acid. J Electrochem Soc 130:2299–2301

    Article  CAS  Google Scholar 

  16. Toda T, Igarashi H, Uchida H, Watanabe M (1999) Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J Electrochem Soc 146:3750–3756

    Article  CAS  Google Scholar 

  17. Sasaki K, Zhang L, Adzic RR (2008) Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction. Phys Chem Chem Phys 10:159–167

    Article  CAS  Google Scholar 

  18. Stephens IEL, Bondarenko AS, Gronbjerg U, Rossmeisl J, Chorkendorff I (2012) Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ Sci 5((5)):6744–6762

    Article  CAS  Google Scholar 

  19. Wang Y-J, Zhao N, Fang B, Li H, Bi XT, Wang H (2015) Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem Rev 115(9):3433–3467

    Article  CAS  Google Scholar 

  20. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang GF, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6(3):241–247

    Article  CAS  Google Scholar 

  21. Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886–17892

    Article  CAS  Google Scholar 

  22. Antolini E, Lopes T, Gonzalez ER (2008) An overview of platinum-based catalysts as methanol-resistant oxygen reduction materials for direct methanol fuel cells. J Alloy Compd 461:253–262

    Article  CAS  Google Scholar 

  23. Kim KT, Kim YG, Chung JS (1995) Effect of surface roughening on the catalytic activity of Pt-Cr electrocatalysts for the oxygen reduction in phosphoric-acid fuel-cell. J Electrochem Soc 142:1531–1538

    Article  CAS  Google Scholar 

  24. Yang H, Alonso-Vante N, Lamy C, Akins DL (2005) High methanol tolerance of carbon-supported Pt-Cr alloy nanoparticle electrocatalysts for oxygen reduction. J Electrochem Soc 152:A704–A709

    Article  CAS  Google Scholar 

  25. Yang H, Alonso-Vante N, Leger JM, Lamy C (2004) Tailoring, structure, and activity of carbon-supported nanosized Pt-Cr alloy electrocatalysts for oxygen reduction in pure and methanol-containing electrolytes. J Phys Chem B 108:1938–1947

    Article  CAS  Google Scholar 

  26. Lima FHB, Giz MJ, Ticianelli EA (2005) Electrochemical performance of dispersed Pt-M (M = V, Cr and Co) nanoparticles for the oxygen reduction electrocatalysis. J Brazil Chem Soc 16:328–336

    Article  CAS  Google Scholar 

  27. Koffi RC, Coutanceau C, Garnier E, Leger JM, Lamy C (2005) Synthesis, characterization and electrocatalytic behaviour of non-alloyed PtCr methanol tolerant nanoelectrocatalysts for the oxygen reduction reaction (ORR). Electrochim Acta 50:4117–4127

    Article  CAS  Google Scholar 

  28. Escano MC, Gyenge E, Nakanishi H, Kasai H (2011) Pt/Cr and Pt/Ni catalysts for oxygen reduction reaction: to alloy or not to alloy? J Nanosci Nanotechnol 11:2944–2951

    Article  CAS  Google Scholar 

  29. Santos LGRA, Freitas KS, Ticianelli EA (2009) Heat treatment effect of Pt-V/C and Pt/C on the kinetics of the oxygen reduction reaction in acid media. Electrochim Acta 54:5246–5251

    Article  CAS  Google Scholar 

  30. Antolini E, Passos RR, Ticianelli EA (2002) Electrocatalysis of oxygen reduction on a carbon supported platinum-vanadium alloy in polymer electrolyte fuel cells. Electrochim Acta 48:263–270

    Article  CAS  Google Scholar 

  31. Antolini E (2003) Formation of carbon-supported PtM alloys for low temperature fuel cells: a review. Mater Chem and Phys 78:563–573

    Article  CAS  Google Scholar 

  32. Zagudaeva NM, Tarasevich MR (2010) Electrochemical characteristics of platinum-based binary catalysts for middle-temperature hydrogen-air fuel cells with phosphoric acid electrolyte. Russ J Electrochem 46:530–536

    Article  CAS  Google Scholar 

  33. Sung Y, Hwang J, Chung JS (2011) Characterization and activity correlations of Pt bimetallic catalysts for low temperature fuel cells. Int J Hydrogen Energ 36:4007–4014

    Article  CAS  Google Scholar 

  34. Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992

    Article  CAS  Google Scholar 

  35. Santiago EI, Varanda LC, Villullas HM (2007) Carbon-supported Pt-Co catalysts prepared by a modifled polyol process as cathodes for PEM fuel cells. J Phys Chem C 111:3146–3151

    Article  CAS  Google Scholar 

  36. Tolentino HCN, Cezar JC, Watanabe N, Piamonteze C, Souza-Neto NM, Tamura E, Ramos A, Neueschwander R (2005) The dispersive X-ray absorption spectroscopy beamline at LNLS. Phys Scr T115:977–979

    Article  CAS  Google Scholar 

  37. Malheiro AR, Perez J, Villullas HM (2010) Surface structure and electronic properties of Pt-Fe/C nanocatalysts and their relation with catalytic activity for oxygen reduction. J Power Sources 195:3111–3118

    Article  CAS  Google Scholar 

  38. Beard BC, Ross PN (1990) The structure and activity of Pt-Co alloys as oxygen reduction electrocatalysts. J Electrochem Soc 137:3368–3374

    Article  CAS  Google Scholar 

  39. Waterstrat RM (1973) Vanadium-platinum constitution diagram. Metall Trans 4:455–466

    Article  Google Scholar 

  40. Okamoto H (2009) Pt-V (platinum-vanadium). J Phase Equilib Diff 30:666–667

    Article  CAS  Google Scholar 

  41. Hunter RJ (1989) Foundations of colloid science, vol 1. Clarendon Press, Oxford

    Google Scholar 

  42. Lizcano-Valbuena WH, Paganin VA, Leite CAP, Galembeck F, Gonzalez ER (2003) Catalysts for DMFC: relation between morphology and electrochemical performance. Electrochim Acta 48:3869–3878

    Article  CAS  Google Scholar 

  43. Barrado E, Pardo R, Castrillejo Y, Vega M (1997) Electrochemical behaviour of vanadium compounds at a carbon paste electrode. J Electroanal Chem 427(1–2):35–42

    Article  CAS  Google Scholar 

  44. Conway BE, Jerkiewicz G (2000) Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’ for cathodic H-2 evolution kinetics. Electrochim Acta 45(25-26):4075–4083

    Article  CAS  Google Scholar 

  45. Trasatti S, Petrii OA (1991) Real surface-area measurements in electrochemistry. Pure Appl Chem 63(5):711–734

    Article  CAS  Google Scholar 

  46. Masa J, Batchelor-McAuley C, Schuhmann W, Compton RG (2014) Koutecky-levich analysis applied to nanoparticle modified rotating disk electrodes: electrocatalysis or misinterpretation? Nano Res 7:71–78

    Article  CAS  Google Scholar 

  47. Tarasevich MR, Sadkowski A, Yeager E (1983) Oxygen electrochemistry. In: Conway B, Bockris JM, Yeager E, Khan SM, White R (eds) Comprehensive Treatise of Electrochemistry. Springer US, pp 301-398

  48. Malheiro AR, Perez J, Villullas HM (2009) Well-alloyed PtFe/C nanocatalysts of controlled composition and same particle size: oxygen reduction and methanol tolerance. J Electrochem Soc 156:B51–B58

    Article  CAS  Google Scholar 

  49. Shukla AK, Raman RK, Choudhury NA, Priolkar KR, Sarode PR, Emura S, Kumashiro R (2004) Carbon-supported Pt-Fe alloy as a methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells. J Electroanal Chem 563:181–190

    Article  CAS  Google Scholar 

  50. Hwang BJ, Tsai YW, Lee JF, Borthen P, Strehblow HH (2001) In situ EXAFS investigation of carbon-supported Pt clusters under potential control. J Synchrotron Radiat 8:484–48651

    Article  CAS  Google Scholar 

  51. Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Role of structural and electronic-properties of Pt and Pt alloys on electrocatalysis of oxygen reduction - an in-situ XANES and EXAFS investigation. J Electrochem Soc 142:1409–1422

    Article  CAS  Google Scholar 

  52. Roques J, Anderson AB (2005) Cobalt concentration effect in Pt1-xCox on the reversible potential for forming OHads from H2Oads in acid solution. Surf Sci 581(2-3):105–117

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to São Paulo Research Foundation (FAPESP) (2011/06538-7, 2014/12255-6) and National Council for Scientific and Technological Development (CNPq) (407143/2013-0) for financial support and to the Brazilian Synchrotron Light Laboratory (LNLS) for assisting DXAS and XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Villullas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gentil, R., Villullas, H.M. Oxygen reduction activity and methanol tolerance of carbon-supported PtV nanoparticles and the effects of heat treatment at low temperatures. J Solid State Electrochem 20, 1119–1129 (2016). https://doi.org/10.1007/s10008-015-2953-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2953-1

Keywords

Navigation