Skip to main content
Log in

Catalysts for oxygen reduction reaction based on nanocrystals of a Pt or Pt–Pd alloy shell supported on a Au core

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanocrystals (NCs) of a Pt or Pd or Pt–Pd alloy shell supported on a Au core were synthesized and dripped onto a glassy carbon (GC) surface to generate thin films. Their electrocatalytic activity towards the oxygen reduction reaction (ORR) was studied employing hydrodynamic cyclic voltammetry. Of the Pt or Pt–Pd alloy electrocatalysts synthesized over a Au core (including Au cores produced from redox-transmetalation of Ni cores), Pt–Pd@Au, Pt@Au, and Pt@Au′ NCs—which contained heterogeneous NCs with spherical, triangular, squared, pentagonal, hexagonal, heptagonal, and rod-like shapes, with large (about 80 nm in several cases), well-defined crystalline structures, and evidenced a nanodendritic Pt or Pt–Pd alloy covering pattern at the NC surface—exhibited high electrocatalytic activity towards ORR and high stability (without dissolution of inner metallic nanoparticles such as Au) after 10,000 potential scans—features that suggest their utility for use in acid fuel cells.

Pt–Pd@Au, Pt@Au, and Pt@Au′ NCs exhibited high electrocatalytic activity towards ORR and high stability (without dissolution of inner metallic nanoparticles such as Au) after 10,000 potential scans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wittstock A, Wichmann A, Bäumer M (2012) Nanoporous gold as a platform for a building block catalyst. ACS Catal 2:2199–2215

    Article  CAS  Google Scholar 

  2. Gong K, Park J, Su D, Adzic RR (2014) Metalizing carbon nanotubes with Pd–Pt core–shell nanowires enhances electrocatalytic activity and stability in the oxygen reduction reaction. J Solid State Electrochem 18:1171–1179

    Article  CAS  Google Scholar 

  3. Zhang G-R, Zhao D, Feng Y-Y, Zhang B, Su DS, Liu G, Xu B-Q (2012) Catalytic Pt-on-Au nanostructures: why Pt becomes more active on smaller Au particles. ACS Nano 6:2226–2236

    Article  CAS  Google Scholar 

  4. Fennell J, He D, Tanyi AM, Logsdail AJ, Johnston RL, Li ZY, Horswell SL (2013) A selective blocking method to control the overgrowth of Pt on Au nanorods. J Am Chem Soc 135:6554–6561

    Article  CAS  Google Scholar 

  5. Hartl K, Mayrhofer KJJ, Lopez M, Goia D, Arenz M (2010) AuPt core–shell nanocatalysts with bulk Pt activity. Electrochem Commun 12:1487–1489

    Article  CAS  Google Scholar 

  6. Zhang H, Jin M, Xia Y (2012) Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem Soc Rev 41:8035–8049

    Article  CAS  Google Scholar 

  7. Li C, Yamauchi Y (2013) Facile solution synthesis of Ag@Pt core–shell nanoparticles with dendritic Pt shells. Phys Chem Chem Phys 15:3490–3496

    Article  CAS  Google Scholar 

  8. Wang L, Yamauchi Y (2010) Controlled aqueous solution synthesis of platinum–palladium alloy nanodendrites with various compositions using amphiphilic triblock copolymers. Chem Asian J 5:2493–2498

    Article  CAS  Google Scholar 

  9. Ataee-Esfahani H, Liu J, Hu M, Miyamoto N, Tominaka S, Wu KCW, Yamauchi Y (2013) Mesoporous metallic cells: design of uniformly sized hollow mesoporous Pt–Ru particles with tunable shell thicknesses. Small 9:1047–1051

    Article  CAS  Google Scholar 

  10. Zhang L, Iyyamperumal R, Yancey DF, Crooks RM, Henkelman G (2013) Design of Pt-shell nanoparticles with alloy cores for the oxygen reduction reaction. ACS Nano 7:9168–9172

    Article  CAS  Google Scholar 

  11. Sasaki K, Naohara H, Cai Y, Choi YM, Liu P, Vukmirovic MB, Wang JX, Adzic RR (2010) Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew Chem Int Ed 49:8602–8607

    Article  CAS  Google Scholar 

  12. Guo S, Zhang S, Sun S (2013) Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew Chem Int Ed 52:2–21

    Google Scholar 

  13. Zhang Y, Ma C, Zhu Y, Si R, Cai Y, Wang JX, Adzic RR (2013) Hollow core supported Pt monolayer catalysts for oxygen reduction. Catal Today 202:50–54

    Article  CAS  Google Scholar 

  14. Sasaki K, Naohara H, Choi YM, Cai Y, Chen W-F, Liu P, Adzic RR (2012) Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat Commun 3:1115. doi:10.1038/ncomms2124

    Article  Google Scholar 

  15. Xing Y, Cai Y, Vukmirovic MB, Zhou W-P, Karan H, Wang JX, Adzic RR (2010) Enhancing oxygen reduction reaction activity via Pd-Au alloy sublayer mediation of Pt monolayer electrocatalysts. J Phys Chem Lett 1:3238–3242

    Article  CAS  Google Scholar 

  16. Cai Y, Adzic RR (2011) Platinum monolayer electrocatalysts for the oxygen reduction reaction: improvements induced by surface and subsurface modifications of cores. Adv Phys Chem Article ID 530397. doi:10.1155/2011/530397

    Google Scholar 

  17. Kuttiyiel KA, Sasaki K, Su D, Vukmirovic MB, Marinkovic NS, Adzic RR (2013) Pt monolayer on Au-stabilized PdNi core–shell nanoparticles for oxygen reduction reaction. Electrochim Acta 110:267–272

    Article  CAS  Google Scholar 

  18. Tripkovic V, Hansen HA, Rossmeisl J, Vegge T (2015) First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction. Phys Chem Chem Phys 17:11647–11657

    Article  CAS  Google Scholar 

  19. Venarusso LB, Tammeveski K, Maia G (2011) Versatile charge transfer through anthraquinone films for electrochemical sensing applications. Electrochim Acta 56:8926–8933

    Article  CAS  Google Scholar 

  20. Angerstein-Kozlowska H (1984) Surfaces, cells, and solutions for kinetics studies. In: Yearger E, Bockris JO’M, Conway BE, Sarangapani S (eds) Comprehensive treatise of electrochemistry, vol 9. Plenum, New York, pp 15

  21. Grdeń M, Łukaszewski M, Jerkiewicz G, Czerwiński A (2008) Electrochemical behaviour of palladium electrode: oxidation, electrodissolution and ionic adsorption. Electrochim Acta 53:7583–7598

    Article  Google Scholar 

  22. Fortunato GV, Venarusso LB, Maia G (2014) Large platinum structures as promising catalysts for the oxygen-reduction reaction. Chem Electro Chem 1:625–636

    Google Scholar 

  23. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22

    Article  CAS  Google Scholar 

  24. Fang P-P, Duan S, Lin X-D, Anema JR, Li J-F, Buriez O, Ding Y, Fan F-R, Wu D-Y, Ren B, Wang ZL, Amatore C, Tian Z-Q (2011) Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity. Chem Sci 2:531–539

    Article  CAS  Google Scholar 

  25. Li J-F, Yang Z-L, Ren B, Liu G-K, Fang P-P, Jiang Y-X, Wu D-Y, Tian Z-Q (2006) Surface-enhanced Raman spectroscopy using gold-core platinum-shell nanoparticle film electrodes: toward a versatile vibrational strategy for electrochemical interfaces. Langmuir 22:10372–10379

    Article  CAS  Google Scholar 

  26. Zhang P, Chen Y-X, Cai J, Liang S-Z, Li J-F, Wang A, Ren B, Tian Z-Q (2009) An electrochemical in situ surface-enhanced Raman spectroscopic study of carbon monoxide chemisorption at a gold core–platinum shell nanoparticle electrode with a flow cell. J Phys Chem C 113:17518–17526

    Article  CAS  Google Scholar 

  27. Zhang P, Cai J, Chen Y-X, Tang Z-Q, Chen D, Yang JL, Wu D-Y, Ren B, Tian Z-Q (2010) Potential-dependent chemisorption of carbon monoxide at a gold core-platinum shell nanoparticle electrode: a combined study by electrochemical in situ surface-enhanced Raman spectroscopy and density functional theory. J Phys Chem C 114:403–411

    Article  CAS  Google Scholar 

  28. Chen D, Li J, Shi C, Du X, Zhao N, Sheng J, Liu S (2007) Properties of core-shell Ni-Au nanoparticles synthesized through a redox-transmetalation method in reverse microemulsion. Chem Mater 19:3399–3405

    Article  CAS  Google Scholar 

  29. Gu J, Zhang Y-W, Tao F (2012) Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chem Soc Rev 41:8050–8065

    Article  CAS  Google Scholar 

  30. Kim D, Lee YW, Lee SB, Han SW (2012) Convex polyhedral Au@Pd core–shell nanocrystals with high-index facets. Angew Chem 124:163–167

    Article  Google Scholar 

  31. Song HM, Anjum DH, Sougrat R, Hedhili MN, Khashab NM (2012) Hollow Au@Pd and Au@Pt core–shell nanoparticles as electrocatalysts for ethanol oxidation reactions. J Mater Chem 22:25003–25010

    Article  CAS  Google Scholar 

  32. Zhang L-F, Zhang C-Y (2013) Dodecahedral Au@Pd nanocrystals with high-index facets and excellent electrocatalytic activity and highly efficient surface-enhanced Raman scattering enhancement. Nanoscale 5:6074–6080

    Article  CAS  Google Scholar 

  33. Cullity BD (1956) Elements of X-ray diffraction. Addison-Wesley Publishing Company, Inc., Reading, Massachusetts

  34. Venarusso LB, Sato RH, Fiorito PA, Maia G (2013) Platinum systems electrodeposited in the presence of iron or palladium on a gold surface effectively catalyze oxygen reduction reaction. J Phys Chem C 117:7540–7551

    Article  CAS  Google Scholar 

  35. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloys, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B: Env. 56:9–35

    Article  CAS  Google Scholar 

  36. Garsany Y, Baturina OA, Swider-Lyons KE, Kocha SS (2010) Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal Chem 82:6321–6328

    Article  CAS  Google Scholar 

  37. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51

    Article  CAS  Google Scholar 

  38. Bligaard T, Nørskov JK (2008) Heterogeneous catalysis. In: Nilsson A, Pettersson LGM, Nørskov JK (eds) Chemical bonding at surfaces and interfaces. Elsevier, Amsterdam, p. 255

    Chapter  Google Scholar 

  39. Pinto LMC, Maia G (2015) Oxygen adsorption on PdPt/Au(111)–DFT calculations. J Phys Chem C 119:8213–8216

    Article  CAS  Google Scholar 

  40. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. John Wiley & Sons, New York

    Google Scholar 

  41. Sepa DB, Vojnovic MV, Damjanovic A (1981) Reaction intermediates as a controlling factor in the kinetics and mechanism of oxygen reduction at platinum electrodes. Electrochim Acta 26:781–793

    Article  CAS  Google Scholar 

  42. Vracar LM, Sepa DB, Damjanovic A (1986) Palladium electrode in oxygen-saturated aqueous solutions—reduction of oxygen in the activation-controlled region. J Electrochem Soc 133:1835–1839

    Article  CAS  Google Scholar 

  43. Lim B, Jiang M, Camargo PHC, Cho EC, Tao J, Lu X, Zhu Y, Xia Y (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324:1302–1305

    Article  CAS  Google Scholar 

  44. Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332:443–447

    Article  CAS  Google Scholar 

  45. Xu Y, Shao M, Mavrikakis M, Adzic RR (2009) Recent developments in the electrocatalysis of the O2 reduction reaction. In: Koper MTM (ed) Fuel cell catalysis: a surface science approach. John Wiley & Sons, New Jersey, p. 271

    Chapter  Google Scholar 

  46. Sasaki K, Shao M, Adzic R (2009) Dissolution and stabilization of platinum in oxygen cathodes. In: Büchi FN, Inaba M, Schmidt TJ (eds) Polymer electrolyte fuel cell durability. Springer, New York, pp. 7–27

    Chapter  Google Scholar 

  47. Greeley J, Markovic NM (2012) The road from animal electricity to green energy: combining experiment and theory in electrocatalysis. Energy Environ Sci 5:9246–9256

    Article  CAS  Google Scholar 

  48. Greeley J (2010) Structural effects on trends in the deposition and dissolution of metal-supported metal adstructures. Electrochim Acta 55:5545–5560

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank LabMic UFG for the microscopy analyses and LNNano for the TEM facilities. Thanks are also given to CNPq (grants 301403/2011-2, 473991/2012-8, 405695/2013-6, 303759/2014-3, and 442268/2014-9) and Fundect-MS (grants 23/200.583/2012, 23/200.735/2012, and 23/200.246/2014) for their financial support. L.B.V. thanks CAPES for the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Maia.

Electronic supplementary material

ESM 1

(DOCX 24581 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venarusso, L.B., Bettini, J. & Maia, G. Catalysts for oxygen reduction reaction based on nanocrystals of a Pt or Pt–Pd alloy shell supported on a Au core. J Solid State Electrochem 20, 1753–1764 (2016). https://doi.org/10.1007/s10008-016-3181-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3181-z

Keywords

Navigation