Skip to main content
Log in

Copper polydopamine complex/multiwalled carbon nanotubes as novel modifier for simultaneous electrochemical determination of ascorbic acid, dopamine, acetaminophen, nitrite and xanthine

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, a novel modified glassy carbon electrode with copper polydopamine complex/multiwalled carbon nanotubes (GCE/Cu2+@PDA-MWCNTs) was fabricated and used for voltammetric determination of ascorbic acid (AA), dopamine (DA), acetaminophen (AC), nitrite (Nit), and xanthine (XN). Different techniques such as field emission electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, and electrochemical impedance spectroscopy were performed for characterization of the GCE/Cu2+@PDA-MWCNTs. Different electrochemical methods such as cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse voltammetry (DPV) methods were employed to study the behavior of AA, DA, AC, Nit, and XN on this proposed modified electrode. The proposed modified electrode displays intense and indelible electrooxidation response for simultaneous determination of AA, DA, AC, Nit, and XN to five well-separated peaks in the potential range from 0.1 to 1.1 V using CV and DPV methods in phosphate buffer solution with pH 2.0. Under the optimum conditions, the calibration curves were liner up to 175, 125, 75, 150, and 115 μM with detection limits of 0.82, 0.45, 0.87, 0.92, and 0.67 μM for AA, DA, AC, Nit, and XN, respectively. This sensor was used to successfully determine these compounds in human urine and serum samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Levine M (1986) New concepts in the biology and biochemistry of ascorbic acid. N Engl J Med 314(14):892–902

    Article  CAS  PubMed  Google Scholar 

  2. Pauling L, Severinghaus JW (1976) Linus Pauling. National Public Radio

  3. Wang G, Chen Z, Chen L (2011) Mesoporous silica-coated gold nanorods: towards sensitive colorimetric sensing of ascorbic acid via target-induced silver overcoating. Nanoscale 3(4):1756–1759

    Article  CAS  PubMed  Google Scholar 

  4. Khorasani-Motlagh M, Noroozifar M (2003) Electrocatalytic determination of L-ascorbic acid by modified glassy carbon with Ni (Me2 (CH3CO) 2 [14] tetraenoN4) complex. Anal Sci 19(12):1671–1674

    Article  CAS  PubMed  Google Scholar 

  5. Hallberg L (1981) Bioavailability of dietary iron in man. Annu Rev Nutr 1(1):123–147

    Article  CAS  PubMed  Google Scholar 

  6. Johnston CS (1999) Biomarkers for establishing a tolerable upper intake level for vitamin C. Nutr Rev 57(3):71–77

    Article  CAS  PubMed  Google Scholar 

  7. Matei N, Birghila S, Popescu V, Dobrinas S, Soceanu A, Oprea C, Magearu V (2008) Kinetic study of vitamin C degradation from pharmaceutical products. Rom J Phys 53(1–2):343–351

    CAS  Google Scholar 

  8. Pezzella A, d'Ischia M, Napolitano A, Misuraca G, Prota G (1997) Iron-mediated generation of the neurotoxin 6-hydroxydopamine quinone by reaction of fatty acid hydroperoxides with dopamine: a possible contributory mechanism for neuronal degeneration in Parkinson's disease. J Med Chem 40(14):2211–2216

    Article  CAS  PubMed  Google Scholar 

  9. Mo J-W, Ogorevc B (2001) Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly (1, 2-phenylenediamine)-coated carbon fiber. Anal Chem 73(6):1196–1202

    Article  CAS  PubMed  Google Scholar 

  10. Pestana M, Jardim H, Serrao P, Soares-da-Silva P, Guerra L (1998) Reduced urinary excretion of dopamine and metabolites in chronic renal parenchymal disease. Kidney Blood Press Res 21(1):59–65

    Article  CAS  PubMed  Google Scholar 

  11. Graham GG, Scott KF, Day RO (2005) Tolerability of paracetamol. Drug Saf 28(3):227–240

    Article  CAS  PubMed  Google Scholar 

  12. Wangfuengkanagul N, Chailapakul O (2002) Electrochemical analysis of acetaminophen using a boron-doped diamond thin film electrode applied to flow injection system. J Pharm Biomed Anal 28(5):841–847

    Article  CAS  PubMed  Google Scholar 

  13. Filik H, Avan AA, Aydar S, Çetintaş G (2014) Determination of acetaminophen in the presence of ascorbic acid using a glassy carbon electrode modified with poly (caffeic acid). Int J Electrochem Sci 9:148–160

    Google Scholar 

  14. Huang Y-G, Ji J-D, Hou Q-N (1996) A study on carcinogenesis of endogenous nitrite and nitrosamine, and prevention of cancer. Mutat Res Fundam Mol Mech Mutagen 358(1):7–14

    Article  Google Scholar 

  15. Yang YJ, Li W (2014) CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Biosens Bioelectron 56:300–306

    Article  CAS  PubMed  Google Scholar 

  16. Amiri-Aref M, Raoof JB, Ojani R (2014) A highly sensitive electrochemical sensor for simultaneous voltammetric determination of noradrenaline, acetaminophen, xanthine and caffeine based on a flavonoid nanostructured modified glassy carbon electrode. Sensors Actuators B Chem 192:634–641

    Article  CAS  Google Scholar 

  17. Sun L, Li H, Li M, Li C, Li P, Yang B (2016) Simultaneous determination of ascorbic acid, dopamine, uric acid, tryptophan, and nitrite on a novel carbon electrode. J Electroanal Chem 783:167–175

    Article  CAS  Google Scholar 

  18. Cheemalapati S, Palanisamy S, Mani V, Chen S-M (2013) Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode. Talanta 117:297–304

    Article  CAS  PubMed  Google Scholar 

  19. Li F, Yang L, Zhao C, Du Z (2011) Electroactive gold nanoparticles/polyaniline/polydopamine hybrid composite in neutral solution as high-performance sensing platform. Anal Methods 3(7):1601–1606

    Article  CAS  Google Scholar 

  20. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849):426–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee H, Rho J, Messersmith PB (2009) Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 21(4):431–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee H, Scherer NF, Messersmith PB (2006) Single-molecule mechanics of mussel adhesion. Proc Natl Acad Sci 103(35):12999–13003

    Article  CAS  PubMed  Google Scholar 

  23. Lee Y, Lee H, Kim YB, Kim J, Hyeon T, Park H, Messersmith PB, Park TG (2008) Bioinspired surface immobilization of hyaluronic acid on monodisperse magnetite nanocrystals for targeted cancer imaging. Adv Mater 20(21):4154–4157

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tao C, Yang S, Zhang J, Wang J (2009) Surface modification of diamond-like carbon films with protein via polydopamine inspired coatings. Appl Surf Sci 256(1):294–297

    Article  CAS  Google Scholar 

  25. Kiss T, Gergely A (1979) Complexes of 3, 4-dhydroxyphnyl derivatives, III. Equilibrium study of parent and some mixed ligand complexes of dopamine, alanine and pyrocatechol with nickel (II), copper (II) and zinc (II) ions. Inorg Chim Acta 36:31–36

    Article  CAS  Google Scholar 

  26. Huang N, Zhang S, Yang L, Liu M, Li H, Zhang Y, Yao S (2015) Multifunctional electrochemical platforms based on the Michael addition/Schiff base reaction of polydopamine modified reduced graphene oxide: construction and application. ACS Appl Mater Interfaces 7(32):17935–17946

    Article  CAS  PubMed  Google Scholar 

  27. Son HY, Ryu JH, Lee H, Nam YS (2013) Silver-polydopamine hybrid coatings of electrospun poly (vinyl alcohol) nanofibers. Macromol Mater Eng 298(5):547–554

    Article  CAS  Google Scholar 

  28. Zhang Q-L, Xu T-Q, Wei J, Chen J-R, Wang A-J, Feng J-J (2013) Facile synthesis of uniform Pt nanoparticles on polydopamine-reduced graphene oxide and their electrochemical sensing. Electrochim Acta 112:127–132

    Article  CAS  Google Scholar 

  29. Lin M, Huang H, Liu Y, Liang C, Fei S, Chen X, Ni C (2013) High loading of uniformly dispersed Pt nanoparticles on polydopamine coated carbon nanotubes and its application in simultaneous determination of dopamine and uric acid. Nanotechnology 24(6):065501

    Article  PubMed  Google Scholar 

  30. Yang L, Kong J, Zhou D, Ang JM, Phua SL, Yee WA, Liu H, Huang Y, Lu X (2014) Transition-metal-ion-mediated polymerization of dopamine: mussel-inspired approach for the facile synthesis of robust transition-metal nanoparticle–graphene hybrids. Chem Eur J 20(25):7776–7783

    Article  CAS  PubMed  Google Scholar 

  31. Paris I, Dagnino-Subiabre A, Marcelain K, Bennett LB, Caviedes P, Caviedes R, Azar CO, Segura-Aguilar J (2001) Copper neurotoxicity is dependent on dopamine-mediated copper uptake and one-electron reduction of aminochrome in a rat substantia nigra neuronal cell line. J Neurochem 77(2):519–529

    Article  CAS  PubMed  Google Scholar 

  32. Postma A, Yan Y, Wang Y, Zelikin AN, Tjipto E, Caruso F (2009) Self-polymerization of dopamine as a versatile and robust technique to prepare polymer capsules. Chem Mater 21(14):3042–3044

    Article  CAS  Google Scholar 

  33. Li H, Jia Y, Feng X, Li J (2017) Facile fabrication of robust polydopamine microcapsules for insulin delivery. J Colloid Interface Sci 487:12–19

    Article  CAS  PubMed  Google Scholar 

  34. Zangmeister RA, Morris TA, Tarlov MJ (2013) Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir 29(27):8619–8628

    Article  CAS  PubMed  Google Scholar 

  35. Nakamoto K (1986) Infrared and raman spectra of inorganic and coordination compounds. Wiley Online Library

  36. Ho C-C, Ding S-J (2014) Structure, properties and applications of mussel-inspired polydopamine. J Biomed Nanotechnol 10(10):3063–3084

    Article  CAS  PubMed  Google Scholar 

  37. Goss CA, Abruna HD (1985) Spectral, electrochemical and electrocatalytic properties of 1, 10-phenanthroline-5, 6-dione complexes of transition metals. Inorg Chem 24(25):4263–4267

    Article  CAS  Google Scholar 

  38. Shahbakhsh M, Noroozifar M (2018) Poly (dopamine quinone-chromium (III) complex) microspheres as new modifier for simultaneous determination of phenolic compounds. Biosens Bioelectron 102:439–448

    Article  CAS  PubMed  Google Scholar 

  39. DuVall SH, McCreery RL (1999) Control of catechol and hydroquinone electron-transfer kinetics on native and modified glassy carbon electrodes. Anal Chem 71(20):4594–4602

    Article  CAS  Google Scholar 

  40. Chen Z, Zhang Z, Qu C, Pan D, Chen L (2012) Highly sensitive label-free colorimetric sensing of nitrite based on etching of gold nanorods. Analyst 137(22):5197–5200

    Article  CAS  PubMed  Google Scholar 

  41. Wang C, Yuan R, Chai Y, Zhang Y, Hu F, Zhang M (2011) Au-nanoclusters incorporated 3-amino-5-mercapto-1, 2, 4-triazole film modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Biosens Bioelectron 30(1):315–319

    Article  CAS  PubMed  Google Scholar 

  42. Shahbakhsh M, Narouie S, Hashemzaei Z, Nouri A, Saravani H, Noroozifar M (2017) Modified graphite paste electrode with strontium phen-dione complex for simultaneous determination of a ternary mixture of dopamine, acetaminophen and xanthine (Part II). Int J Electrochem Sci 12:11763–11777

    Article  CAS  Google Scholar 

  43. Zhang Y, Yuan R, Chai Y, Li W, Zhong X, Zhong H (2011) Simultaneous voltammetric determination for DA, AA and NO2− based on graphene/poly-cyclodextrin/MWCNTs nanocomposite platform. Biosens Bioelectron 26(9):3977–3980

    Article  CAS  PubMed  Google Scholar 

  44. Zhou Y, He M, Huang C, Dong S, Zheng J (2012) A novel and simple biosensor based on poly (indoleacetic acid) film and its application for simultaneous electrochemical determination of dopamine and epinephrine in the presence of ascorbic acid. J Solid State Electrochem 16(6):2203–2210

    Article  CAS  Google Scholar 

  45. Ghica ME, Wintersteller Y, Brett CM (2013) Poly (brilliant green)/carbon nanotube-modified carbon film electrodes and application as sensors. J Solid State Electrochem 17(6):1571–1580

    Article  CAS  Google Scholar 

  46. Li NB, Ren W, Luo HQ (2008) Simultaneous voltammetric measurement of ascorbic acid and dopamine on poly (caffeic acid)-modified glassy carbon electrode. J Solid State Electrochem 12(6):693–699

    Article  CAS  Google Scholar 

  47. Vidyadharan AK, Jayan D, Nancy TM (2014) Ni 0.1 Co 0.9 Fe 2 O 4-based electrochemical sensor for the detection of paracetamol. J Solid State Electrochem 18(9):2513–2519

    Article  CAS  Google Scholar 

  48. Yang C, Xu J, Hu S (2007) Development of a novel nitrite amperometric sensor based on poly (toluidine blue) film electrode. J Solid State Electrochem 11(4):514–520

    Article  CAS  Google Scholar 

  49. Yang S, Li G, Yang R, Xia M, Qu L (2011) Simultaneous voltammetric detection of dopamine and uric acid in the presence of high concentration of ascorbic acid using multi-walled carbon nanotubes with methylene blue composite film-modified electrode. J Solid State Electrochem 15(9):1909–1918

    Article  CAS  Google Scholar 

  50. Yang H, Li Y, Liu Y, Zhang Y, Zhao Y, Zhao M (2015) One-pot chemical blasting synthesis of the bamboo-like multiwalled carbon nanotubes/graphene oxide nanocomposite and its application in electrochemical detection of dopamine. J Solid State Electrochem 19(1):145–152

    Article  CAS  Google Scholar 

  51. Zhang L, Shi Z, Lang Q (2011) Fabrication of poly (orthanilic acid)–multiwalled carbon nanotubes composite film-modified glassy carbon electrode and its use for the simultaneous determination of uric acid and dopamine in the presence of ascorbic acid. J Solid State Electrochem 15(4):801–809

    Article  CAS  Google Scholar 

  52. Zhou S, Zuo R, Zhu Z, Wu D, Vasa K, Deng Y, Zuo Y (2013) An eco-friendly hydrophilic interaction HPLC method for the determination of renal function biomarkers, creatinine and uric acid, in human fluids. Anal Methods 5(5):1307–1311

    Article  CAS  Google Scholar 

  53. Rincón F, Martínez B, Delgado J (2003) Detection of factors influencing nitrite determination in meat. Meat Sci 65(4):1421–1427

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Shahbakhsh or M. Noroozifar.

Electronic supplementary material

ESM 1

(DOCX 508 kb)

ESM 2

(DOCX 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahbakhsh, M., Noroozifar, M. Copper polydopamine complex/multiwalled carbon nanotubes as novel modifier for simultaneous electrochemical determination of ascorbic acid, dopamine, acetaminophen, nitrite and xanthine. J Solid State Electrochem 22, 3049–3057 (2018). https://doi.org/10.1007/s10008-018-4013-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4013-0

Keywords

Navigation