Skip to main content
Log in

Effect of supporting electrolyte concentration on one-step electrodeposited CuInS2 films for ZnS/CuInS2 solar cell applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A one-step electrodeposition process was used to obtain CuInS2 (CIS) films on a molybdenum substrate by varying the supporting electrolyte (lithium chloride, LiCl) concentration. The as-deposited samples were characterized by scanning electron microscopy, energy-dispersive spectroscopy, profilometry, and diffuse reflectance spectroscopy. From characterization, it was found that different concentrations of LiCl mainly lead to a morphological change in the obtained CIS films. Moreover, their chemical composition shifted to the stoichiometric composition for high concentrations of the supporting electrolyte. After annealing, the structural analysis from X-ray diffraction revealed that all samples crystallized in the tetragonal phase of CIS. In addition, it was found that the crystallite size increased for samples grown at higher concentrations of LiCl. Optical studies carried out by diffuse reflectance spectroscopy revealed that the band gap values increased from ~ 1.40 to ~ 1.45 eV (average) after the annealing process. Finally, zinc sulfide (ZnS) thin films were chemically deposited onto electrodeposited CIS films in order to evaluate the photovoltaic response of ZnS/CIS bilayer systems. We discovered that ZnS thin films covered the surface of CIS more effectively for the highest concentration of LiCl and that only the ZnS/CIS bilayer with the CIS film obtained at the highest concentration of LiCl showed a photovoltaic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article. Other datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Störkel U, Argour M, Murrell C, Lewerenz H (2001) Electrochemical treatment of CuInS2. Thin Solid Films 387(1-2):182–184

    Article  Google Scholar 

  2. Xu X, Wang F, Liu J, Ji J (2010) Effect of potassium hydrogen phthalate (C8H5KO4) on the one–step electrodeposition of single-phase CuInS2 thin films from acidic solution. Electrochim Acta 55(15):4428–4435

    Article  CAS  Google Scholar 

  3. Tang Y, Ng Y, Yun J, Amal R (2014) Fabrication of a CuInS2 photoelectrode using a single-step electrodeposition with controlled calcination atmosphere. Roy Soc Ch Adv 4:3278

    CAS  Google Scholar 

  4. Moreau A, Insignares C, Escoubas L, Simon J, Bermúdez V, Pérez A, Izquierdo V, Ruiz C (2015) Impact of Cu-Au type domains in high current density CuInS2 Solar cells. Sol Energ Mat Sol C 139:101–107

    Article  CAS  Google Scholar 

  5. Guo J, Chang G, Zhang W, Liu X, He Y (2016) Facile synthesis of CuInS2 nanoparticles using different alcohol amines as solvent. Chem Phys Lett 647:51–54

    Article  CAS  Google Scholar 

  6. Abushama J, Rommel N, Johnston S, Ward S, Wu X (2005) Improved performance in CuInSe2 and surface–modified CuGaSe2 solar cells. Proceedings of the 31st IEEE Photovoltaic Specialists Conference, Lake Buena Vista, 299–302.

  7. Green M, Hishikawa Y, Dunlop E, Levi D, Hohl J, Ho A (2018) Solar cell efficiency tables (version 51). Prog Photovolt 26(1):3–12

    Article  Google Scholar 

  8. Goto H, Hashimoto Y, Ito K (2004) Efficient thin film solar cell consisting of TCO/CdS/CuInS2/CuGaS2 structure. Thin Solid Films 451–452:552–555

    Article  CAS  Google Scholar 

  9. Nakabayashi T, Miyazawa T, Hashimoto Y, Ito K (1997) Over 10 % efficient CuInS2 solar cell by sulfurization. Sol Energ Mat Sol C 49(1-4):375–381

    Article  CAS  Google Scholar 

  10. Yuan J, Shao C, Zheng L, Fan M, Lu H, Hao C, Tao D (2014) Fabrication of CuInS2 thin film by electrodeposition of Cu–In alloy. Vacuum 99:196–203

    Article  CAS  Google Scholar 

  11. Zhuang M, Wei A, Zhao Y, Liu J, Yan Z, Liu Z (2015) Morphology controlled growth of special nanostructure CuInS2 thin films on an FTO substrate and their application in thin film solar cells. Int J Hydrogen Energ 40(1):806–814

    Article  CAS  Google Scholar 

  12. Peng S, Liang J, Zhang L, Shi Y, Chen J (2007) Shape–controlled synthesis and optical characterization of chalcopyrite CuInS2 microstructures. J Cryst Growth 305(1):99–103

    Article  CAS  Google Scholar 

  13. Bollero A, Trigo J, Herrero J, Gutiérrez M (2009) Simplified modulated evaporation process for production of CuInS2 films with reduced substrate temperatures. Thin Solid Films 517(7):2167–2170

    Article  CAS  Google Scholar 

  14. Cherian A, Jinesh K, Kashiwaba Y, Abe T, Balamurugan A, Dash S, Tyagi A, Kartha C, Vijayakumar K (2012) Double layer CuInS2 absorber using spray pyrolysis: a better candidate for CuInS2/In2S3 thin film solar cells. Sol Energy 86(6):1872–1879

    Article  CAS  Google Scholar 

  15. Di Iorio Y, Vázquez M (2017) Inexpensive methodology to prepare TiO2/CuInS2 hetero–junctions for photovoltaic applications. Mater Res Express 4(4):045903

    Article  CAS  Google Scholar 

  16. Broussillou C, Andrieux M, Herbst M, Jeandin M, Jaime J, Morin S (2011) Sulfurization of Cu–In electrodeposited precursors for CuInS2–based solar cells. Sol Energ Mat Sol C 95:S13–S17

    Article  CAS  Google Scholar 

  17. Lu L, Wang Y, Li V (2012) Influence of processing parameters on the preparation of CuInS2 thin film by one–step electrodeposition as the solar cell absorber. Surf Coat Technol 212:55–60

    Article  CAS  Google Scholar 

  18. Greenwood N, Earnshaw A (1997) Chemistry of the elements (2nd ed.). Butterworth-Heinemann. ISBN 0–08–037941–9.

  19. Martínez A, Fernández A, Arriaga L, Cano U (2006) Preparation and characterization of Cu–In–S thin films by electrodeposition. Mater Chem Phys 95(2-3):270–274

    Article  CAS  Google Scholar 

  20. Asenjo B, Chaparro M, Gutiérrez M, Herrero J (2006) Electrochemical growth and properties of CuInS2 thin films for solar energy conversion. Thin Solid Films 511–512:117–120

    Article  CAS  Google Scholar 

  21. Cheng K, Chiang W (2011) Effect of [Cu]/[Cu+In] ratio in the solution bath on the growth and physical properties of CuInS2 films using one–step electrodeposition. J Electroanal Chem 661(1):57–65

    Article  CAS  Google Scholar 

  22. Guan R, Cao L, Sun Q, Cao Y (2015) Effects of preparation conditions on the CuInS2 films prepared by one–step electrodeposition method. J Nanomater 2015:ID678929

    Google Scholar 

  23. Wang J (2006) Analytical Electrochemistry, 3rd edn. Wiley, USA

    Book  Google Scholar 

  24. Nieszporek J, Gugala D, Nieszporek K (2019) The effect of supporting electrolyte concentration on zinc electrodeposition kinetics from methimazole solutions. Electroanalysis 31(6):1141–1149

    Article  CAS  Google Scholar 

  25. Dhanwate V, Chaure N (2013) Effect of growth potential on the electrodeposition of CIS thin films. Appl Nanosci 2:1–5

    Article  CAS  Google Scholar 

  26. Ribeaucourt L, Savidant G, Lincot D, Chassaing E (2011) Electrochemical study of one–step electrodeposition of copper-indium-gallium-alloys in acidic condition as precursors layers for Cu(In,Ga)Se2 thin films solar cells. Electrochim Acta 56(19):6628–6637

    Article  CAS  Google Scholar 

  27. You R, Lew K, Fu Y (2014) Effect of electrodeposition potential on composition of CuIn1-xGaxSe2 absorber layer for solar cell by one–step electrodeposition. Int J Photoenergy 2014:478428

    Article  CAS  Google Scholar 

  28. Martínez A, Arriaga L, Fernandez A, Cano U (2004) Band edge determination of CuInS2 thin films prepared by electrodeposition. Mater Chem Phys 88:41–420

    Article  CAS  Google Scholar 

  29. Xu X, Wang F, Liu J, Park K, Fujishig M (2011) A novel one–step electrodeposition to prepare single–phase CuInS2 thin films for solar cells. Sol Energy Mater Sol Cells 95(2):791–796

    Article  CAS  Google Scholar 

  30. Wijesundera R, Siripala W (2004) Preparation of CuInS2 thin films by electrodeposition and sulphurization for applications in solar cells. Sol Energy Mater Sol C 81(2):147–154

    Article  CAS  Google Scholar 

  31. Rodríguez C, Sandoval M, Cabello G, Flores M, Fernández H, Carrasco C (2014) Characterization of ZnS thin films synthesized through a non–toxic precursors chemical bath. Mater Res Bull 60:313–321

    Article  CAS  Google Scholar 

  32. Di Iorio Y, Berruet M, Schreiner W, Vázquez M (2014) Characterization of CuInS2 thin films prepared by one–step electrodeposition. J Appl Electrochem 44(12):1279–1287

    Article  CAS  Google Scholar 

  33. Rabeh M, Khedmi N, Fodha M, Kanzari M (2014) The effect of thickness on optical band gap and N-type conductivity of CuInS2 thin films annealed in air atmosphere. Energy Procedia 44:52–60

    Article  CAS  Google Scholar 

  34. Sharma R, Mane R, Mn S, Han S (2009) Optimization of growth of In2O3 nano-spheres films by electrodeposition for dye-sensitized solar cells. J Alloys Compd 479(1-2):840–843

    Article  CAS  Google Scholar 

  35. Henriquez R, Muñoz E, Dalchiele E, Marotti R, Martin F, Leinen D, Ramos J (2013) Electrodeposition of In2O3 thin films from dimethyl sulfoxide based electrolytic solution. Phys Status Solidi A 210(2):297–305

    Article  CAS  Google Scholar 

  36. Liang W, Yanlai W, Wei Y, Jun Z, Jiangang X (2015) Effect of sulfurization time on the formation of CuInS2 thin films. Rare Metal Mater Eng 44(4):805–807

    Article  Google Scholar 

  37. Rodríguez C, Sandoval M, Saavedra R, Trejo C, De la Carrera F, Aragón L, Sirena M, Delplancke M, Carrasco C (2016) Comprehensive study of growth mechanism and properties of low Zn content Cd1-xZnxS thin films by chemical bath. Mater Res-Ibero-Am J 19:1335–1343

    Google Scholar 

  38. Hong J, Lim D, Eo Y, Choi C (2017) Chemical bath deposited ZnS buffer layer for Cu(In,Ga)Se2 thin films solar cell. Appl Surf Sci 432:250–254

    Article  CAS  Google Scholar 

  39. Agawane G, Shin S, Kim M, Suryawanshi M, Gurav K, Moholkar A, Lee J, Yun J, Patil P, Kim J (2013) Green route fast synthesis and characterization of chemical bath deposited nanocrystalline ZnS buffer layers. Curr Appl Phys 13(5):850–856

    Article  Google Scholar 

  40. Valdés M, Berruet M, Goosens A, Vázquez M (2010) Spray deposition of CuInS2 on electrodeposited ZnO for low-cost solar cells. Surf Coat Technol 204(24):3995–4000

    Article  CAS  Google Scholar 

  41. Dehghani M, Behjat A, Tajabadi F, Taghavinia N (2015) Totally solution-processed CuInS2 solar cells based on chloride inks: reduced metastable phased and improved current density. J Phys D Appl Phys 48(11):115304

    Article  CAS  Google Scholar 

  42. Dhimish M, Holmes V, Mehrdadi B, Dales M (2017) The impact of cracks on the photovoltaic power performance. J Sci Adv Mater Devices 2:199–2009

    Article  Google Scholar 

  43. Ennemri E, Logerais P, Balistrou M, Durastanti J, Belaidi I (2019) Cracks in silicon photovoltaic modules: a review. J Optoelectron Adv Mater 21:74–92

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the use of Servicio General de Apoyo a la Investigación–SAI, Universidad de Zaragoza, Spain. C.A. Rodríguez acknowledges the valuable advice of Dra. Marcela Vázquez.

Funding

This work was financially supported by the Comisión Nacional de Ciencia y Tecnología (CONICYT) through the project FONDECYT Iniciación 11160368 and Gobierno de Aragón–Fondo Social Europeo (E14 17R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Rodríguez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, C.A., Delgadillo, A., Núñez, J. et al. Effect of supporting electrolyte concentration on one-step electrodeposited CuInS2 films for ZnS/CuInS2 solar cell applications. J Solid State Electrochem 24, 1405–1414 (2020). https://doi.org/10.1007/s10008-020-04622-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04622-1

Keywords

Navigation