Skip to main content

Advertisement

Log in

Sr3Mn2O6 and Sr3FeMnO6 for oxygen and hydrogen evolution electrocatalysis

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Quasi-two-dimensional oxides Sr3Mn2O6 and Sr3FeMnO6 have been synthesized and their bifunctional electrocatalytic activity toward both half-reactions of water-splitting, i.e., oxygen-evolution reaction (OER) and hydrogen-evolution reaction (HER), has been demonstrated. The two materials are isostructural and consist of (Fe/Mn)O5 square-pyramidal units that form two-dimensional layers, separated by strontium ions. This structure type is related to the so-called Ruddlesden-Popper (RP) structure, which typically contains 7 oxygens per formula unit and consists of octahedrally coordinated transition metals. The two materials in this work can be described as oxygen-deficient RP systems. Both compounds show electrocatalytic activity for OER and HER, with Sr3FeMnO6 having a significantly greater performance compared to Sr3Mn2O6. The overpotential required for both OER and HER is considerably lowered for Sr3FeMnO6. This material also shows faster reaction kinetics and greater electrochemically active surface area compared to Sr3Mn2O6. While the activity of Sr3FeMnO6 does not reach those of state-of-the-art catalysts, its bifunctional electrocatalytic performance is remarkable. In addition, it demonstrates the important role of electronegativity in directing functional properties such as electrocatalysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yu N, Jiang G, Liu T, Chen X, Miao M, Zhang Y, Wang Y (2021) Sustain Energy fuels 5:401–411

    Article  CAS  Google Scholar 

  2. Karki SB, Hona RK, Ramezanipour F (2020) J Electron Mater 49:1557–1567

    Article  CAS  Google Scholar 

  3. Hona RK, Ramezanipour F (2020) Inorg Chem 59:4685–4692

    Article  CAS  PubMed  Google Scholar 

  4. Kananke-Gamage CCW, Ramezanipour F (2021) Dalton Trans 50:14196–14206

    Article  CAS  PubMed  Google Scholar 

  5. Adler SB (2004) Chem Rev 104:4791–4844

    Article  CAS  PubMed  Google Scholar 

  6. Voorhoeve RJH, Johnson DW, Remeika JP, Gallagher PK (1977) Science 195:827

    Article  CAS  PubMed  Google Scholar 

  7. Hodges JP, Jorgensen JD, Xiong X, Dabrowski B, Mini SM, Kimball CW (2000) D Mater Sci U Northern Illinois J. Solid State Chem 151:209

  8. Berenov AV, Atkinson A, Kilner JA, Bucher E, Sitte W (2010) Solid State Ionics 181:819–826

    Article  CAS  Google Scholar 

  9. Adler SB (1998) Solid State Ionics 111:125–134

    Article  CAS  Google Scholar 

  10. Xu X, Pan Y, Zhong Y, Ran R, Shao Z (2020) Mater Horiz 7:2519–2565

    Article  CAS  Google Scholar 

  11. Ruddlesden SN, Popper P (1957) Acta Cryst 10:538–539

    Article  CAS  Google Scholar 

  12. Ruddlesden SN, Popper P (1958) Acta Cryst 11:54–55

    Article  CAS  Google Scholar 

  13. Alom MS, Ramezanipour F (2021) Mater Lett 295:129859

  14. Beppu K, Hosokawa S, Teramura K, Tanaka T (2015) J Mater Chem A 3:13540–13545

    Article  CAS  Google Scholar 

  15. Mitchell JF, Millburn JE, Medarde M, Short S, Jorgensen JD, Fernández-Dı́az MT (1998) J Solid State Chem 141:599–603

  16. Dann SE, Weller MT, Currie DB (1992) J Solid State Chem 97:179–185

    Article  CAS  Google Scholar 

  17. Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) J Am Chem Soc 135:8452–8455

    Article  CAS  PubMed  Google Scholar 

  18. Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y (2011) Nat Chem 3:546

    Article  CAS  PubMed  Google Scholar 

  19. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) Science 334:1383

    Article  CAS  PubMed  Google Scholar 

  20. Jung K-N, Lee J-I, Im WB, Yoon S, Shin K-H, Lee J-W (2012) Chem Commun 48:9406–9408

    Article  CAS  Google Scholar 

  21. Takeguchi T, Yamanaka T, Takahashi H, Watanabe H, Kuroki T, Nakanishi H, Orikasa Y, Uchimoto Y, Takano H, Ohguri N, Matsuda M, Murota T, Uosaki K, Ueda W (2013) J Am Chem Soc 135:11125–11130

    Article  CAS  PubMed  Google Scholar 

  22. Zhu Y, Tahini HA, Hu Z, Dai J, Chen Y, Sun H, Zhou W, Liu M, Smith SC, Wang H, Shao Z (2019) Nat Commun 10:149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Takashima T, Ishikawa K, Irie H (2014) ECS Trans 61:35–41

    Article  CAS  Google Scholar 

  24. Wei Z, Cui Y, Huang K, Ouyang J, Wu J, Baker AP, Zhang X (2016) RSC Adv 6:17430–17437

    Article  CAS  Google Scholar 

  25. Yu J, Sunarso J, Zhu Y, Xu X, Ran R, Zhou W, Shao Z (2016) Chem Eur J 22:2719–2727

    Article  CAS  PubMed  Google Scholar 

  26. Liu R, Liang F, Zhou W, Yang Y, Zhu Z (2015) Nano Energy 12:115–122

    Article  CAS  Google Scholar 

  27. Karki SB, Andriotis AN, Menon M, Ramezanipour F, Appl ACS (2021) Energy Mater 4:12063–12066

    CAS  Google Scholar 

  28. Alom MS, Ramezanipour F (2021) ChemCatChem 13:3510–3516

    Article  CAS  Google Scholar 

  29. Hona RK, Karki SB, Ramezanipour F, Susttain ACS (2020) Chem Eng 8:11549–11557

    CAS  Google Scholar 

  30. Karki SB, Ramezanipour F, Appl ACS (2020) Energy Mater 3:10983–10992

    CAS  Google Scholar 

  31. Hona RK, Ramezanipour F (2019) Angew Chem 58:2060–2063

    Article  CAS  Google Scholar 

  32. Hona RK, Karki SB, Cao T, Mishra R, Sterbinsky GE, Ramezanipour F (2021) ACS Catal 11:14605–14614

    Article  CAS  Google Scholar 

  33. Guedes I, Mitchell JF, Argyriou D, Grimsditch M (2000) Phys Rev B 62:13809–13811

    Article  CAS  Google Scholar 

  34. Song M-S, Kim S-Y, Lee J-Y (2004) Ceramics − Silikáty 48:175–179

  35. Dann SE, Weller MT (1995) J Solid State Chem 115:499–507

    Article  CAS  Google Scholar 

  36. Larson AC, Von Dreele RB (1994), 86–748

  37. Toby BH (2001) J Appl Crystallogr 34:210–213

    Article  CAS  Google Scholar 

  38. Hona RK, Ramezanipour F (2018) J. Mater Sci Mater Electron

  39. Hona RK, Ramezanipour F (2019) Polyhedron 167:69–74

    Article  CAS  Google Scholar 

  40. Karki SB, Ramezanipour F (2019) Mater Today Chem 13:25–33

    Article  CAS  Google Scholar 

  41. Retuerto M, Pascual L, Calle-Vallejo F, Ferrer P, Gianolio D, Pereira AG, García Á, Torrero J, Fernández-Díaz MT, Bencok P, Peña MA, Fierro JLG, Rojas S (2019) Nat Commun 10:2041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Zhou W, Sunarso J (2013) J Phys Chem Lett 4:2982–2988

    Article  CAS  Google Scholar 

  43. Wang J, Gao Y, Chen D, Liu J, Zhang Z, Shao Z, Ciucci F (2018) ACS Catal 8:364–371

    Article  CAS  Google Scholar 

  44. Cava RJ, Santoro A, Krajewski JJ, Fleming RM, Waszczak JV, Peck WF, Marsh P (1990) Physica C Supercond 172:138–142

    Article  CAS  Google Scholar 

  45. Itoh M, Shikano M, Kawaji H, Nakamura T (1991) Solid State Commun 80:545–548

    Article  CAS  Google Scholar 

  46. Wu A, Gu Y, Xie Y, Tian C, Yan H, Wang D, Zhang X, Cai Z, Fu H, Appl ACS (2019) Mater Interfaces 11:25986–25995

    Article  CAS  Google Scholar 

  47. Jiang L, Ji S-J, Xue H-G, Suen N-T (2020) Int J Hydrog Energy 45:17533–17539

    Article  CAS  Google Scholar 

  48. Hwang BJ, Chen HC, Mai FD, Tsai HY, Yang CP, Rick J, Liu YC (2015) Sci Rep 5:16263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mohammed-Ibrahim J, Sun X (2019) J Energy Chem 34:111–160

    Article  Google Scholar 

  50. McCrory CCL, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF (2015) J Am Chem Soc 137:4347–4357

    Article  CAS  PubMed  Google Scholar 

  51. Zhu Y, Zhou W, Zhong Y, Bu Y, Chen X, Zhong Q, Liu M, Shao Z (2017) Adv Energy Mater 7:1602122

    Article  CAS  Google Scholar 

  52. Xu X, Chen Y, Zhou W, Zhu Z, Su C, Liu M, Shao Z (2016) Adv Mater 28:6442–6448

    Article  CAS  PubMed  Google Scholar 

  53. Sun Q, Dai Z, Zhang Z, Chen Z, Lin H, Gao Y, Chen D (2019) J Power sources 427:194–200

    Article  CAS  Google Scholar 

  54. Ramana CV, Bandi M, Nair AN, Manciu FS, Sreenivasan S, Shutthanandan V, Appl ACS (2021) Energy Mater 4:1313–1322

    CAS  Google Scholar 

  55. Allen LRF, Bard J (2000) Electrochemical methods: fundamentals and applications, 2nd illustrated ed., Wiley

  56. Shinagawa T, Garcia-Esparza AT, Takanabe K (2015) Sci Rep 5:13801–13801

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ma Z, Zhang Y, Liu S, Xu W, Wu L, Hsieh Y-C, Liu P, Zhu Y, Sasaki K, Renner JN, Ayers KE, Adzic RR, Wang JX (2018) J Electroanal Chem 819:296–305

    Article  CAS  Google Scholar 

  58. Baeumer C, Li J, Lu Q, Liang AY-L, Jin L, Martins HP, Duchoň T, Glöß M, Gericke SM, Wohlgemuth MA, Giesen M, Penn EE, Dittmann R, Gunkel F, Waser R, Bajdich M, Nemšák S, Mefford JT, Chueh WC (2021) Nat Mater 20:674–682

    Article  CAS  PubMed  Google Scholar 

  59. Retuerto M, Calle-Vallejo F, Pascual L, Lumbeeck G, Fernandez-Diaz MT, Croft M, Gopalakrishnan J, Peña MA, Hadermann J, Greenblatt M, Rojas S, Appl ACS (2019) Mater Interfaces 11:21454–21464

    Article  CAS  Google Scholar 

  60. Maitra S, Mitra R, Nath TK (2021) J Alloys Compd 858:157679

  61. Tahira A, Ibupoto ZH, Willander M, Nur O (2019) Int J Hydrog Energy 44:26148–26157

    Article  CAS  Google Scholar 

  62. Kumar N, Kumar M, Nagaiah TC, Siruguri V, Rayaprol S, Yadav AK, Jha SN, Bhattacharyya D, Paul AK, Appl ACS (2020) Mater Interfaces 12:9190–9200

    Article  CAS  Google Scholar 

  63. Xu W, Apodaca N, Wang H, Yan L, Chen G, Zhou M, Ding D, Choudhury P, Luo H (2019) ACS Catal 9:5074–5083

    Article  CAS  Google Scholar 

  64. Grimaud A, May KJ, Carlton CE, Lee Y-L, Risch M, Hong WT, Zhou J, Shao-Horn Y (2013) Nat Commun 4:2439

    Article  PubMed  CAS  Google Scholar 

  65. Chen G, Zhou W, Guan D, Sunarso J, Zhu Y, Hu X, Zhang W, Shao Z (2017) Sci Adv 3:e1603206

  66. Chaitoglou S, Bertran E (2017) J Mater Sci 52:8348–8356

    Article  CAS  Google Scholar 

  67. Wei C, Rao RR, Peng J, Huang B, Stephens IEL, Risch M, Xu ZJ, Shao-Horn Y (2019) Adv Mater 31:1806296

    Article  CAS  Google Scholar 

  68. Suen N-T, Hung S-F, Quan Q, Zhang N, Xu Y-J, Chen HM (2017) Chem Soc Rev 46:337–365

    Article  CAS  PubMed  Google Scholar 

  69. Dong C, Yuan X, Wang X, Liu X, Dong W, Wang R, Duan Y, Huang F (2016) J Mater Chem A 4:11292–11298

    Article  CAS  Google Scholar 

  70. Zhu Y, Zhou W, Chen Z-G, Chen Y, Su C, Tadé MO, Shao Z (2015) Angew Chem 54:3897–3901

    Article  CAS  Google Scholar 

  71. Li M, Xiong Y, Liu X, Bo X, Zhang Y, Han C, Guo L (2015) Nanoscale 7:8920–8930

    Article  CAS  PubMed  Google Scholar 

  72. Song F, Hu X (2014) J Am Chem Soc 136:16481–16484

    Article  CAS  PubMed  Google Scholar 

  73. Moir J, Soheilnia N, O’Brien P, Jelle A, Grozea CM, Faulkner D, Helander MG, Ozin GA (2013) ACS Nano 7:4261–4274

    Article  CAS  PubMed  Google Scholar 

  74. Jung S, McCrory CCL, Ferrer IM, Peters JC, Jaramillo TF (2016) J Mater Chem A 4:3068–3076

    Article  CAS  Google Scholar 

  75. Lu B, Cao D, Wang P, Wang G, Gao Y (2011) Int J Hydrogen energy 36:72–78

    Article  CAS  Google Scholar 

  76. Oh S, Kim H, Kwon Y, Kim M, Cho E, Kwon H (2016) J Mater Chem A 4:18272–18277

    Article  CAS  Google Scholar 

  77. Connor P, Schuch J, Kaiser B, Jaegermann W, Phys Z (2020) Chem 234:979–994

    CAS  Google Scholar 

  78. Pan Y, Chen Y, Li X, Liu Y, Liu C (2015) RSC Adv 5:104740–104749

    Article  CAS  Google Scholar 

  79. Zhang B, Lui YH, Zhou L, Tang X, Hu S (2017) J Mater Chem A 5:13329–13335

    Article  CAS  Google Scholar 

  80. Zhu Y, Zhou W, Sunarso J, Zhong Y, Shao Z (2016) Adv funct mater 26:5862–5872

    Article  CAS  Google Scholar 

  81. Petrie JR, Cooper VR, Freeland JW, Meyer TL, Zhang Z, Lutterman DA, Lee HN (2016) J Am Chem Soc 138:2488–2491

    Article  CAS  PubMed  Google Scholar 

  82. Bocquet AE, Mizokawa T, Saitoh T, Namatame H, Fujimori A (1992) Phys Rev B 46:3771–3784

    Article  CAS  Google Scholar 

  83. Suntivich J, Hong WT, Lee Y-L, Rondinelli JM, Yang W, Goodenough JB, Dabrowski B, Freeland JW, Shao-Horn Y (2014) J Phys Chem C 118:1856–1863

    Article  CAS  Google Scholar 

  84. Yagi S, Yamada I, Tsukasaki H, Seno A, Murakami M, Fujii H, Chen H, Umezawa N, Abe H, Nishiyama N, Mori S (2015) Nat Commun 6:8249

    Article  PubMed  Google Scholar 

  85. Yamashita T, Hayes P (2008) Appl Surf Sci 254:2441–2449

    Article  CAS  Google Scholar 

  86. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-Ray Photoelectron Spectroscopy, Editor J. Chastain, Perkin-Elmer Corporation, Eden Prairie

Download references

Acknowledgements

This work is supported by the National Science Foundation (NSF) under grant no. DMR-1943085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Ramezanipour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karki, S.B., Hona, R.K. & Ramezanipour, F. Sr3Mn2O6 and Sr3FeMnO6 for oxygen and hydrogen evolution electrocatalysis. J Solid State Electrochem 26, 1303–1311 (2022). https://doi.org/10.1007/s10008-022-05167-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05167-1

Keywords

Navigation