Skip to main content
Log in

Electrochemical sensors based on antimony tin oxide-Prussian blue screen-printed electrode and PEDOT-Prussian blue for potassium ion detection

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The development and analytical applications of electrochemical sensors based on antimony tin oxide (ATO)–Prussian blue (PB) screen-printed electrode (SPE) and PEDOT-PB modified glassy carbon electrode are presented. The ATO-PB electrode was successfully applied in the electrochemical detection of K+ ions. The detection and quantification limits value of 1.1 mM and of 3.7 mM, respectively, have been obtained. A high sensitivity of 0.035 A M−1 cm−2 has been also obtained. In addition, a sensing material based on poly(3,4-ethylenedioxythiophene) (PEDOT) and PB has been developed by a sinusoidal voltage electrochemical procedure and tested toward the potassium ion detection. The PEDOT-PB sensing material displayed the characteristic redox wave of the PB component and good analytical performance toward potassium ion detection. These results demonstrate the utility of the novel electrode materials in the development of electrochemical sensors for electroinactive analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arduini F, Micheli L, Moscone D, Palleschi G, Piermarini S, Ricci F, Volpe G (2016) Electrochemical biosensors based on nanomodified screen-printed electrodes: recent applications in clinical analysis. TrAC Trends Anal Chem 79:114–126. https://doi.org/10.1016/j.trac.2016.01.032

    Article  CAS  Google Scholar 

  2. Hayat A, Marty JL (2014) Disposable screen printed electrochemical sensors: tools for environmental monitoring. Sens Basel 14:10432–10453. https://doi.org/10.3390/s140610432

    Article  CAS  Google Scholar 

  3. Pérez-Fernández B, Costa-García A, de la Escosura-Muñiz A (2020) Electrochemical (bio)sensors for pesticides detection using screen-printed electrodes. Biosensors 10:32. https://doi.org/10.3390/bios10040032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dhanapala L, Krause CE, Jones AL, Rusling JF (2020) Printed electrodes in microfluidic arrays for cancer biomarker protein detection. Biosensors 10:115. https://doi.org/10.3390/bios10090115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Antuña-Jiménez D, González-García MB, Hernández-Santos D, Fanjul-Bolado P (2020) Screen-printed electrodes modified with metal nanoparticles for small molecule sensing. Biosensors 10:9. https://doi.org/10.3390/bios10020009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiménez-Pérez R, Iniesta J, Baeza-Romero MT, Valero E (2021) On the performance of carbon-based screen-printed electrodes for (in)organic hydroperoxides sensing in rainwater. Talanta 234:122699. https://doi.org/10.1016/j.talanta.2021.122699

  7. O’Halloran MP, Pravda M, Guibault GG (2001) Prussian Blue bulk modified screen printed electrodes for H2O2 detection and for biosensors. Talanta 55:605–611. https://doi.org/10.1016/S0039-9140(01)00469-6

    Article  PubMed  Google Scholar 

  8. Aller Pellitero M, Colina Á, Villa R, Javier del Campo F (2018) Antimony tin oxide (ATO) screen-printed electrodes and their application to spectroelectrochemistry. Electrochem Commun 93:123–127. https://doi.org/10.1016/j.elecom.2018.06.012

    Article  CAS  Google Scholar 

  9. Santiago S, Aller M, del Campo F, Guirado G (2019) Screen-printable electrochromic polymer inks and ion gel electrolytes for the design of low-power, flexible electrochromic devices. Electroanalysis 31:1664–1671. https://doi.org/10.1002/elan.201900154

    Article  CAS  Google Scholar 

  10. Harris TGA, Götz R, Wrzolek P, Davis V, Knapp CE, Ly K, Hildebrandt P, Schwalbe M, Weidinger I, Zebger I, Fischer A (2018) Robust electrografted interfaces on metal oxides for electrocatalysis - an in situ spectroelectrochemical study. J Mater Chem A 6:15200–15212. https://doi.org/10.1039/C8TA02983K

    Article  CAS  Google Scholar 

  11. Müller V, Rathousky J, Fattakhova-Rohlfing D (2014) Covalent immobilization of redox protein within the mesopores of transparent conducting electrodes. Electrochim Acta 116:1–8. https://doi.org/10.1016/j.electacta.2013.10.136

    Article  CAS  Google Scholar 

  12. Aller-Pellitero M, Fremeau J, Villa R, Guirado G, Lakard B, Hihn JY, Javier del Campo F (2019) Electrochromic biosensors based on screen-printed Prussian Blue electrodes. Sens Actuat B Chem 290:591–597. https://doi.org/10.1016/j.snb.2019.03.100

    Article  CAS  Google Scholar 

  13. Itaya K, Uchida I, Neff VD (1986) Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc Chem Res 19:162–168. https://doi.org/10.1021/ar00126a001

    Article  CAS  Google Scholar 

  14. Neff VD (1978) Electrochemical oxidation and reduction of thin films of Prussian blue. J Electrochem Soc 128:886–887. https://doi.org/10.1149/1.2131575

    Article  Google Scholar 

  15. Itaya K, Ataka T, Toshima S (1982) Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. J Am Chem Soc 104:4767–4772. https://doi.org/10.1021/ja00382a006

    Article  CAS  Google Scholar 

  16. Karyakin AA, Karyakina EE, Gorton L (1996) Prussian Blue based amperometric biosensors in flow-injection analysis. Talanta 43:1597–1606. https://doi.org/10.1016/0039-9140(96)01909-1

    Article  CAS  PubMed  Google Scholar 

  17. Karyakin AA (2001) Prussian Blue and its analogues: electrochemistry and analytical applications. Electroanal 13:813–819. https://doi.org/10.1002/1521-4109(200106)13:10%3c813::AID-ELAN813%3e3.0.CO;2-Z

    Article  CAS  Google Scholar 

  18. Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens Bioelectron 21:389–407. https://doi.org/10.1016/j.bios.2004.12.001

    Article  CAS  PubMed  Google Scholar 

  19. Marquitan M, Clausmeyer J, Actis P, Cordoba AL, Korchev Y, Mark MD, Herlitze S, Schuhmann W (2016) Intracellular hydrogen peroxide detection with functionalised nanoelectrodes. ChemElectroChem 3:2125–2129. https://doi.org/10.1002/celc.201600390

    Article  CAS  Google Scholar 

  20. Karyakin AA (2017) Advances of Prussian blue and its analogues in (bio)sensors. Curr Opin Electrochem 5:92–98. https://doi.org/10.1016/j.coelec.2017.07.006

    Article  CAS  Google Scholar 

  21. Xu Y, Zheng S, Tang H, Guo X, Xue H, Pang H (2017) Prussian blue and its derivatives as electrode materials for electrochemical energy storage. Energy Storage Materials 9:11–30. https://doi.org/10.1016/j.ensm.2017.06.002

    Article  Google Scholar 

  22. Celiesiute R, Ramanaviciene A, Gicevicius M, Ramanavicius A (2019) Electrochromic sensors based on conducting polymers, metal oxides, and coordination complexes. Crit Rev Anal Chem 49:195–208. https://doi.org/10.1080/10408347.2018.1499009

  23. Cinti S, Cusenza R, Moscone D, Arduini F (2018) Paper-based synthesis of Prussian Blue nanoparticles for the development of whole blood glucose electrochemical biosensor. Talanta 187:59–64. https://doi.org/10.1016/j.talanta.2018.05.015

    Article  CAS  PubMed  Google Scholar 

  24. Tomei MR, Cinti S, Interino N, Manovella V, Moscone D, Arduini F (2019) Paper-based electroanalytical strip for user-friendly blood glutathione detection. Sens Actuat B Chem 294:291–297. https://doi.org/10.1016/j.snb.2019.02.082

    Article  CAS  Google Scholar 

  25. Ortiz-Aguayo D, De Wael K, del Valle M (2021) Voltammetric sensing using an array of modified SPCE coupled with machine learning strategies for the improved identification of opioids in presence of cutting agents. J Electroanal Chem 902:115770. https://doi.org/10.1016/j.jelechem.2021.115770

  26. Aller-Pellitero M, Santiago-Malagón S, Ruiz J, Alonso Y, Lakard B, Hihn JY, Guirado G, Javier del Campo F (2020) Fully-printed and silicon free self-powered electrochromic biosensors: Towards naked eye quantification. Sens Actuat B Chem 306:127535. https://doi.org/10.1016/j.snb.2019.127535

  27. Santiago-Malagon S, Río-Colín D, Azizkhani H, Aller-Pellitero M, Guirado G, Javier del Campo F (2021) A self-powered skin-patch electrochromic biosensor. Biosens Bioelectron 175:112879. https://doi.org/10.1016/j.bios.2020.112879

  28. Coleman JP, Lynch AT, Madhukar P, Wagenknecht JH (1999) Printed, flexible electrochromic displays using interdigitated electrodes. Sol Energy Mater Sol Cells 56:395–418. https://doi.org/10.1016/S0927-0248(98)00144-5

    Article  CAS  Google Scholar 

  29. Malik MA, Kulesza PJ, Wlodarczyk R, Wittstock G, Szargan R, Bala H, Galus Z (2005) Formation of ultra-thin prussian blue layer on carbon steel that promotes adherence of hybrid polypyrrole based protective coating. J Solid State Electrochem 9:403–411. https://doi.org/10.1007/s10008-005-0654-x

    Article  CAS  Google Scholar 

  30. Palmer BF (2015) Regulation of potassium homeostasis. Clin J Am Soc Nephrol 10:1050–1060. https://doi.org/10.2215/CJN.08580813

    Article  CAS  PubMed  Google Scholar 

  31. Ozer T, Henry CS (2022) All-solid-state potassium-selective sensor based on carbon black modified thermoplastic electrode. Electrochim Acta 404:139762. https://doi.org/10.1016/j.electacta.2021.139762

  32. Yoon JH, Park HJ, Park SH, Lee KG, Choi BG (2020) Electrochemical characterization of reduced graphene oxide as an ion-to-electron transducer and application of screen-printed all-solid-state potassium ion sensors. Carbon Letters 30:73–80. https://doi.org/10.1007/s42823-019-00072-6

    Article  Google Scholar 

  33. Zhang S, Zahed MA, Sharifuzzaman Md, Yoon S, Hui X, Barman SC, Sharma S, Yoon HS, Park C, Park JY (2021) A wearable battery-free wireless and skin-interfaced microfluidics integrated electrochemical sensing patch for on-site biomarkers monitoring in human perspiration. Biosens Bioelectron 175:112844. https://doi.org/10.1016/j.bios.2020.112844

  34. Thanh Nguyen BT, Ang JQ, Toh CS (2009) Sensitive detection of potassium ion using Prussian blue nanotube sensor. Electrochem Commun 11:1861–1864. https://doi.org/10.1016/j.elecom.2009.08.003

    Article  CAS  Google Scholar 

  35. Wang G, Chen L, Zhu Y, He X, Xu G, Zhang X (2014) Development of an electrochemical sensor based on the catalysis of ferrocene actuated hemin/G-quadruplex enzyme for the detection of potassium ions. Biosens Bioelectron 61:410–416. https://doi.org/10.1016/j.bios.2014.05.052

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS/CCCDI – UEFISCDI, project number PN-III-P2-2.1-PED-2021-3693, within PNCDI III. JdC gratefully acknowledges funding from the Spanish Research Agency, AEI, (Project number PID2020-113154RB-C22). A part of this work was carried out within the research program “Electrode processes, corrosion and materials for electrochemical systems” of the “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy.

Author information

Authors and Affiliations

Authors

Contributions

Sorina Alexandra Leau: Investigation, Formal Analysis, Data curation, Writing—original draft. Cecilia Lete: Conceptualization, Methodology, Supervision, Validation, Investigation, Formal analysis, Writing—original draft, Writing—review & editing. Mariana Marin: Formal analysis, Data curation. Francisco Javier del Campo: Conceptualization, Investigation, Writing—review & editing. Ioana Diaconu: Formal analysis, Data curation, Writing—review & editing. Stelian Lupu: Supervision, Conceptualization, Methodology, Validation, Investigation, Data curation, Formal analysis, Resources, Writing—original draft, Writing—review & editing.

Corresponding authors

Correspondence to Cecilia Lete, Francisco Javier del Campo or Stelian Lupu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leau, S.A., Lete, C., Marin, M. et al. Electrochemical sensors based on antimony tin oxide-Prussian blue screen-printed electrode and PEDOT-Prussian blue for potassium ion detection. J Solid State Electrochem 27, 1755–1766 (2023). https://doi.org/10.1007/s10008-023-05392-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05392-2

Keywords

Navigation