Skip to main content
Log in

Optimization of contact stress for the high contact ratio spur gears achieved through novel hob cutter

Optimierung der Kontaktspannung für Stirnräder mit hohem Kontaktverhältnis durch neuartigen Wälzfräser

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

High contact ratio gears are used to minimize the stresses generated on the tooth surface. This research article represents an idea to enrich the contact strength of gear drive using novel high contact ratio (NHCR) spur gear. The increase in contact stress leads to contact fatigue failure, reducing the power transmission capacity of the gear drive. To reduce contact fatigue failure, contact stress needs to be reduced. A high contact ratio spur gear is developed using the novel hob cutter with variable tooth thickness to minimize the contact stress. For a novel hob cutter, the tooth thickness coefficient is greater than 0.5, while the thickness factor of a conventional hob cutter is 0.5. The maximum contact stress is determined through finite element analysis. In addition, a parametric study is executed for the gear parameter such as gear ratio, gear teeth, pressure angle, addendum factor and addendum correction factor to determine optimum contact stress.

Zusammenfassung

Zahnräder mit hoher Überdeckung werden verwendet, um die an der aktiven Zahnflanke vorliegende Beanspruchung zu minimieren. Dieser Forschungsartikel stellt eine Idee vor, die Grübchentragfähigkeit einer Verzahnung durch die Verwendung von Stirnrädern mit großer Profilüberdeckung zu steigern. Der Anstieg der Kontaktspannung führt zu Wälzermüdung und verringert die Leistungsfähigkeit des Zahnradantriebs. Um die Wälzbeanspruchung zu reduzieren, muss die Kontaktspannung reduziert werden. Es werden Stirnräder mit hoher Überdeckung betrachtet, wobei diese unter Verwendung eines neuartigen Wälzfräsers mit variabler Zahndicke erzeugt wurden, um die Kontaktbeanspruchung zu minimieren. Bei dem verwendeten, neuartigen Wälzfräser ist der Zahndickenkoeffizient größer als 0,5, während der Zahndickenkoeffizient eines herkömmlichen Wälzfräsers 0,5 beträgt. Die maximale Kontaktspannung wird durch Finite-Element-Analyse bestimmt. Darüber hinaus wird eine Parametervariation für die Verzahnungsgrößen Übersetzungsverhältnis, Zähnezahl, Eingriffswinkel, Profilverschiebung und Kopfhöhenfaktor durchgeführt, um die optimale Kontaktspannung zu bestimmen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Buckingham E (1963) Analytical mechanics of gears. Dover, New York

    Google Scholar 

  2. Elkholy AH (1985) Tooth load sharing in high contact ratio spur gears. J Mech Transm Autom Des 107:11–16

    Article  Google Scholar 

  3. Wang J, Howard I (2005) Finite element analysis of high contact ratio spur gears in mesh. J Tribol 127:469–483. https://doi.org/10.1115/1.1843154

    Article  Google Scholar 

  4. Ravivarman R, Palaniradja K, Sekar RP (2018) Evolution of balanced root stress and tribological properties in high contact ratio spur gear drive. Mech Mach Theory 126:491–513. https://doi.org/10.1016/j.mechmachtheory.2018.04.025

    Article  Google Scholar 

  5. Mohanty SC (2003) Tooth load sharing and contact stress analysis of high contact ratio spur gears in mesh. J Inst Eng Mech Eng Div 84:66–70

    Google Scholar 

  6. Thirumurugan R, Muthuveerappan G (2011) Critical loading points for maximum fillet and contact stresses in normal and high contact ratio spur gears based on load sharing ratio. Mech Based Des Struct Mach 39:118–141. https://doi.org/10.1080/15397734.2011.540488

    Article  Google Scholar 

  7. Thirumurugan R, Muthuveerappan G (2010) Maximum fillet stress analysis based on load sharing in normal contact ratio spur gear drives. Mech Based Des Struct Mach. https://doi.org/10.1080/15397730903500842

    Article  Google Scholar 

  8. Sekar RP, Ravivarman R (2019) Influence of addendum modification factor on root stresses in normal contact ratio asymmetric spur gears. J Solid Mech 11:210–221. https://doi.org/10.22034/JSM.2019.664230

    Article  Google Scholar 

  9. Ravivarman R, Prabhu Sekar R (2021) Estimation of loss factor based on the load share model in improved bending strength spur gear drive system. Proc Inst Mech Eng Part J 235:33–45. https://doi.org/10.1177/1350650120945533

    Article  Google Scholar 

  10. Ravivarman R, Palaniradja K, Sekar RP (2018) Influence of gear ratio on wear depth of nonstandard HCR spur gear drive with balanced fillet stress. Mater Today Proc 5:17350–17359. https://doi.org/10.1016/j.matpr.2018.04.148

    Article  Google Scholar 

  11. Ravivarman R, Palaniradja KRPS (2019) Performance enhancement of normal contact ratio gearing system through correction factor. J Mech Eng Sci 13:5242–5258. https://doi.org/10.15797/concom.2019..23.009

    Article  Google Scholar 

  12. Maper A, Karuppanan S, Patil SS (2019) Analysis and formulation of spur gear stresses with different tip modifications. J Cent South Univ 26:2368–2378. https://doi.org/10.1007/s11771-019-4180-x

    Article  Google Scholar 

  13. Sekar P, Muthuveerappan G (2015) A balanced maximum fillet stresses on normal contact ratio spur gears to improve the load carrying capacity through nonstandard gears. Mech Based Des Struct Mach 43:150–163. https://doi.org/10.1080/15397734.2014.934833

    Article  Google Scholar 

  14. Pedersen NL (2010) Improving bending stress in spur gears using asymmetric gears and shape optimization. Mech Mach Theory 45:1707–1720. https://doi.org/10.1016/j.mechmachtheory.2010.06.004

    Article  MATH  Google Scholar 

  15. He R, Tenberge P, Xu X et al (2021) Study on the optimum standard parameters of hob optimization for reducing gear tooth root stress. Mech Mach Theory 156:104128. https://doi.org/10.1016/j.mechmachtheory.2020.104128

    Article  Google Scholar 

  16. Zhao X (2014) Increasing bending strength in spur gears using shape optimisation of cutting tool profile. Aust J Mech Eng 12:208–216. https://doi.org/10.7158/M13-027.2014.12.2

    Article  Google Scholar 

  17. Pedersen NL (2015) Minimizing tooth bending stress in spur gears with simplified shapes of fillet and tool shape determination. Eng Optim 47:805–824. https://doi.org/10.1080/0305215X.2014.927452

    Article  Google Scholar 

  18. Spitas C, Spitas V, Amani A, Rajabalinejad M (2014) Parametric investigation of the combined effect of whole depth and cutter tip radius on the bending strength of 20 involute gear teeth. Acta Mech 225:361–371. https://doi.org/10.1007/s00707-013-0971-6

    Article  Google Scholar 

  19. Dong P, Zuo S, Du S et al (2020) Optimum design of the tooth root profile for improving bending capacity. Mech Mach Theory 151:103910. https://doi.org/10.1016/j.mechmachtheory.2020.103910

    Article  Google Scholar 

  20. Pedersen NL (2009) Reducing bending stress in external spur gear, by redesign of the standard cutting tool. Struct Multidiscip Optim 38:215–227. https://doi.org/10.1007/s00158-008-0289-5

    Article  Google Scholar 

  21. Miler D, Lončar A, Žeželj D, Domitran Z (2017) Influence of profile shift on the spur gear pair optimization. Mech Mach Theory 117:189–197. https://doi.org/10.1016/j.mechmachtheory.2017.07.001

    Article  Google Scholar 

  22. Bonori G, Barbieri M, Pellicano F (2008) Optimum profile modifications of spur gears by means of genetic algorithms. J Sound Vib 313:603–616. https://doi.org/10.1016/j.jsv.2007.12.013

    Article  Google Scholar 

  23. Pedrero JI, Pleguezuelos M, Sánchez MB (2019) Load sharing model for high contact ratio spur gears with long profile modifications. Forsch Ingenieurwes 83:401–408. https://doi.org/10.1007/s10010-019-00379-w

    Article  Google Scholar 

  24. Sánchez MB, Pleguezuelos M, Pedrero JI (2013) Enhanced model of load distribution along the line of contact for non-standard involute external gears. Meccanica 48:527–543. https://doi.org/10.1007/s11012-012-9612-8

    Article  MATH  Google Scholar 

  25. Sánchez MB, Pedrero JI, Pleguezuelos M (2013) Contact stress calculation of high transverse contact ratio spur and helical gear teeth. Mech Mach Theory 64:93–110. https://doi.org/10.1016/j.mechmachtheory.2013.01.013

    Article  Google Scholar 

  26. Sánchez MB, Pleguezuelos M, Pedrero JI (2014) Tooth-root stress calculation of high transverse contact ratio spur and helical gears. Meccanica 49:347–364. https://doi.org/10.1007/s11012-013-9799-3

    Article  MATH  Google Scholar 

  27. Pedrero JI, Vallejo II, Pleguezuelos M (2007) Calculation of tooth bending strength and surface durability of high transverse contact ratio spur and helical gear drives. J Mech Des Trans ASME 129:69–74. https://doi.org/10.1115/1.2403773

    Article  Google Scholar 

  28. Pleguezuelos M, Sánchez MB, Pedrero JI (2020) Control of transmission error of high contact ratio spur gears with symmetric profile modifications. Mech Mach Theory 149:103839. https://doi.org/10.1016/j.mechmachtheory.2020.103839

    Article  Google Scholar 

  29. Karpat F, Ekwaro-Osire S (2008) Dynamic analysis of high-contact-ratio spur gears with asymmetric teeth. In: Mechanical systems and control, vol 11. ASMEDC, , pp 285–291

    Google Scholar 

  30. Wang Y, Ren S, Li Y (2019) Design and manufacturing of a novel high contact ratio internal gear with a circular arc contact path. Int J Mech Sci 153–154:143–153. https://doi.org/10.1016/j.ijmecsci.2019.01.031

    Article  Google Scholar 

  31. Yılmaz TG, Doğan O, Karpat F (2019) A comparative numerical study of forged bi-metal gears: bending strength and dynamic response. Mech Mach Theory 141:117–135. https://doi.org/10.1016/j.mechmachtheory.2019.07.007

    Article  Google Scholar 

  32. Belarhzal S, Daoudi K, Boudi EM et al (2021) A multiobjective optimization analysis of spur gear pair: the profile shift factor effect on structure design and efficiency. Math Probl Eng. https://doi.org/10.1155/2021/8873769

    Article  Google Scholar 

  33. ANSYS (2009) 12.1 Element references. ANSYS, Canonsburg

    Google Scholar 

  34. Marimuthu P, Muthuveerappan G (2016) Optimization of fillet stress to enhance the bending strength through non-standard high contact ratio spur gears. Proc Inst Mech Eng Part C 230:1139–1148. https://doi.org/10.1177/0954406215602287

    Article  Google Scholar 

  35. Marimuthu P, Muthuveerappan G (2016) Investigation of load carrying capacity of asymmetric high contact ratio spur gear based on load sharing using direct gear design approach. MAMT 96:52–74. https://doi.org/10.1016/j.mechmachtheory.2015.09.007

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Science & Engineering Research Board, India, for providing a funding grant (File No. ECR/2017/000425) to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Marimuthu.

Ethics declarations

Conflict of interest

S. Rajesh, P. Marimuthu and P. Dinesh Babu declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajesh, S., Marimuthu, P. & Dinesh Babu, P. Optimization of contact stress for the high contact ratio spur gears achieved through novel hob cutter. Forsch Ingenieurwes 86, 123–131 (2022). https://doi.org/10.1007/s10010-022-00577-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-022-00577-z

Navigation