Skip to main content
Log in

Parent Material and Topography Determine Soil Phosphorus Status in the Luquillo Mountains of Puerto Rico

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Phosphorus (P) availability in terrestrial ecosystems depends on soil age, climate, parent material, topographic position, and biota, but the relative importance of these drivers has not been assessed. To ask which factor has the strongest influence on long- and short-timescale metrics of P availability, we sampled soils across a full-factorial combination of two parent materials [quartz diorite (QD) and volcaniclastic (VC)], three topographic positions (ridge, slope, and valley), and across 550 m in elevation in 17 sub-watersheds of the Luquillo Mountains, Puerto Rico. VC rocks had double the P content of QD (600 vs. 300 ppm; P < 0.0001), and soil P was similarly approximately 2× higher in VC-derived soils (P < 0.0001). Parent material also explained the most variance in our two other long-timescale metrics of P status: the fraction of recalcitrant P (56% variance explained) and the loss of P relative to parent material (35% variance explained), both of which were higher on VC-derived soils (P < 0.0001 for both). Topographic position explained an additional 10–15% of the variance in these metrics. In contrast, there was no parent material effect on the more labile NaHCO3- and NaOH-extractable P soil pools, which were approximately 2.5× greater in valleys than on ridges (P < 0.0001). Taken together, these data suggest that the relative importance of different state factors varies depending on the ecosystem property of interest and that parent material and topography can play sub-equal roles in driving differences in ecosystem P status across landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Amundson R, Jenny H. 1997. Thinking of biology: on a state factor model of ecosystems. Bioscience 47(8):536–43.

    Article  Google Scholar 

  • Barone JA, Thomlinson J, Anglada-Cordero P, Zimmerman JK. 2008. Metacommunity structure of tropical forests along an elevational gradient in Puerto Rico. J Trop Ecol 24:1–10.

    Article  Google Scholar 

  • Bawiec WJ, Ed. 1999. Geology, geochemistry, geophysics, mineral occurrences and mineral resource assessment for the Commonwealth of Puerto Rico. US Geological Survey Open-File Report 98-038 (available online only).

  • Brimhall GH, Dietrich WE. 1987. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis. Geochim Cosmochim Acta 51:567–87.

    Article  CAS  Google Scholar 

  • Brookshire ENJ, Gerber S, Webster JR, Vose JM, Swank WT. 2011. Direct effects of temperature on forest nitrogen cycling revealed through analysis of long-term watershed records. Glob Change Biol 17:297–308.

    Article  Google Scholar 

  • Buss HL, Mathur R, White AF, Brantley SL. 2010. Phosphorus and iron cycling in deep saprolite, Luquillo Mountains, Puerto Rico. Chem Geol 269:52–636.

    Article  CAS  Google Scholar 

  • Chacon N, Silver WL, Dubinsky EA, Cusack DF. 2006. Iron reduction and soil phosphorus solubilization in humid tropical forests soils: the roles of labile carbon pools and an electron shuttle compound. Biogeochemistry 78:67–84.

    Article  CAS  Google Scholar 

  • Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO. 1999. Changing sources of nutrients during four million years of ecosystem development. Nature 397:491–7.

    Article  CAS  Google Scholar 

  • Chadwick OA, Gavenda, RT, Kelly EF, Ziegler K. 2003. The impact of climate on the biogeochemical functioning of volcanic soils. Chemical Geol 202:195–223.

    Article  CAS  Google Scholar 

  • Cleveland CC, Townsend AR, Taylor P, Alvarez-Clare S, Bustamante MMC, Chuyong G, Dobrowski SZ, Solomon Z, Grierson P, Harms KE, Houlton BZ, Marklein A, Partion W, Porder S, Reed SC, Sierra CA, Silver WL, Tanner EVJ, Edmund VJ, Wieder WR. 2011. Relationships among net primary productivity, nutrients climate in tropical rain forest: a pan-tropical analysis. Ecol Lett 14(9):939–47.

    Article  PubMed  Google Scholar 

  • Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, Vitousek PM. 1995. Changes in soil phosphorus ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76(5):1407–24.

    Article  Google Scholar 

  • Cross AF, Schlesinger WH. 1995. A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64:197–214.

    Article  CAS  Google Scholar 

  • Davidson EA, Reis de Carvalho CJ, Figueira AM, Ishida FY, Ometto JPHB, Nardoto GB, Saba RT, Hayashi SN, Leal EC, Vieira ICG, Martinelli L. 2007. Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 449:995–8.

    Article  Google Scholar 

  • De’ath G, Fabricius KE. 2000. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–92.

    Article  Google Scholar 

  • Dieter D, Elsenbeer H, Turner BL. 2010. Phosphorus fractionation in lowland tropical rainforest soils in central Panama. Catena 82(2):118–25.

    Article  CAS  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpolse WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in fresh-water, marine, and terrestrial ecosystems. Ecol Lett 10:1135–42.

    Article  PubMed  Google Scholar 

  • Frizano J, Johnson AH, Van DR, Scatena FN. 2002. Soil phosphorus fractionation during forest development on landslide scars in the Luquillo Mountains, Puerto Rico. Biotropica 34(1):17–26.

    Google Scholar 

  • Garcia-Montiel DC, Neill C, Melillo J, Suzanne T, Steudler PA, Cerri CC. 2000. Soil phosphorus transformations following forest clearing for pasture in the Brazilian Amazon. Soil Sci Soc Am J 64:1792–804.

    Article  CAS  Google Scholar 

  • Germer S, Neill C, Krusche AV, Elsenbeer H. 2010. Influence of land-use change on near-surface hydrological processes: undisturbed forest to pasture. J Hydrol 380(3–4):473–80.

    Article  Google Scholar 

  • Harrison AF. 1987. Soil organic phosphorus: a review of world literature. Wallingford: CAB International.

    Google Scholar 

  • Hedley MJ, Stewart JWB, Chauhan BS. 1982. Changes in inorganic and organic soil phosphorus fractions by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46:970–6.

    Article  CAS  Google Scholar 

  • Huffaker, L. 2002. In: Brannon GR, Ragus GF, Eds. Soil survey of Caribbean National Forest and Luquillo Experimental Forest, Commonwealth of Puerto Rico. United States Department of Agriculture and Natural Resource Conservation Service. 181 pp.

  • Jenny H. 1941. Factors of soil formation: a system of quantitative pedology. New York (NY): McGraw Hill.

    Google Scholar 

  • Johnson AH, Frizano J, Vann DR. 2003. Biogeochemical implications of labile phosphorus in forest soils determine by the Hedley fractionation procedure. Oecologia 135(4):487–99.

    PubMed  Google Scholar 

  • Kitayama K, Majalap-Lee N, Aiba S. 2000. Soil phosphorus fractionation and phosphorus-use efficiencies of tropical rainforests along altitudinal gradients of Mount Kinabalu, Borneo. Oecologia 123(3):342–9.

    Article  Google Scholar 

  • Kurtz AC, Derry LA, Chadwick OA, Alfano MJ. 2000. Refractory element mobility in volcanic soils. Geology 28:683–6.

    Article  CAS  Google Scholar 

  • Larsen MC, Torres-Sanchez AJ. 1998. The frequency and distribution of recent landslides in three montane tropical regions of Puerto Rico. Geomorphology 24:309–31.

    Article  Google Scholar 

  • McGroddy ME, Daufresne T, Hedin LO. 2004. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology 85(9):2390–401.

    Article  Google Scholar 

  • Miller AJ, Schuur EAG, Chadwick OA. 2001. Redox control of phosphorus pools in Hawaiian montane forest. Geoderma 102:219–37.

    Article  CAS  Google Scholar 

  • Pett-Ridge JC. 2009. Contributions of dust to phosphorus cycling in tropical forests of the Luquillo Mountains, Puerto Rico. Biogeochemistry 94:63–80.

    Article  CAS  Google Scholar 

  • Porder S, Payton A, Vitousek PM. 2005. Erosion landscape development affect plant nutrient status in the Hawaiian Islands. Oecologia 142:440–9.

    Article  PubMed  Google Scholar 

  • Porder S, Hilley GE, Chadwick OA. 2007. Chemical weathering, mass loss, dust inputs across a climate by time matrix in the Hawaiian Islands. Earth Planet Sci Lett 258(3–4):414–27.

    Article  CAS  Google Scholar 

  • Porder S, Chadwick OA. 2009. Climate and soil-age constraints on nutrient uplift and retention by plants. Ecology 90(3):623–36.

    Article  PubMed  Google Scholar 

  • Porder S, Ramachandran S. 2012. The phosphorus content of common rocks—a potential driver of ecosystem P status. Plant and Soil. doi:10.1007/s11104-012-1490-2.

  • Raich JW, Russell AE, Crews TE, Farrington H, Vitousek PM. 1996. Both nitrogen and phosphorus limit plant production on young Hawaiian lava flows. Biogeochemistry 32:1–14.

    Article  Google Scholar 

  • Reed SC, Vitousek PM, Cleveland CC. 2011. Are patterns in nutrient limitation belowground consistent with those aboveground: results from a 4 million year chronosequence. Biogeochemistry 106(3):323–36.

    Article  CAS  Google Scholar 

  • Reich PB, Oleksyn J. 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. PNAS 101(30):11001–6.

    Article  PubMed  CAS  Google Scholar 

  • Riebe CS, Kirchner JW, Finkel RC. 2003. Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance. Geochim Cosmochim Acta 67(22):4411–27.

    Article  CAS  Google Scholar 

  • Richter DD, Allen HL, Li J, Markewitz D, Raikes J. 2006. Bioavailability of slowly cycling soil phosphorus: major restructuring of soil P fractions over four decades in an aggrading forest. Oecologia 150:259–71.

    Article  PubMed  Google Scholar 

  • Sanchez PA. 1976. Properties and management of soils in the tropics. New York: Wiley.

    Google Scholar 

  • Scatena FN. 1989. An introduction to the physiography and history of the Bisley experimental watersheds in the Luquillo Mountains of Puerto Rico. US Forest Service General Technical Report.

  • Schuur EAG, Matson PA. 2001. Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. Oecologia 128(3):431–42.

    Article  Google Scholar 

  • Selmants PC, Hart SC. 2008. Substrate age and tree islands influence carbon and nitrogen dynamics across a retrogressive semiarid chronosequence. Global Biogeochem Cycles 22:1–13.

    Article  Google Scholar 

  • Silver WL, Scatena FN, Johnson AH, Siccama TG, Sanchez MJ. 1994. Nutrient availability in a montane wet tropical forest: spatial patterns methodological considerations. Plant Soil 164(1):129–45.

    Article  CAS  Google Scholar 

  • Silver WL, Lugo AE, Keller M. 1999. Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry 44:301–28.

    Google Scholar 

  • Syers JK, Johnston AE, Curtin D. 2008. Reconciling changing concepts of soil phosphorus behaviour with agronomic information: efficiency of soil and fertilizer phosphorus use. Rome: FAO.

    Google Scholar 

  • Takyu M, Aiba S, Kitayama K. 2002. Effects of topography on tropical lower montane forests under different geological conditions on Mount Kinabalu, Borneo. Plant Ecol 159:35–49.

    Article  Google Scholar 

  • Tiessen H, Moir JO. 1993. Characterization of available P by sequential extraction. Soil sampling methods of analysis. Canadian Society of Soil Science. Boca Raton: Lewis Publishers. pp. 75–86.

  • Townsend AR, Asner GP, Cleveland CC. 2008. The biogeochemical heterogeneity of tropical forests. Trends Ecol Evol 23(8):424–31.

    Article  PubMed  Google Scholar 

  • Townsend AR, Cleveland CC, Houlton BZ, Alden CB, White JWC. 2011. Multi-element regulation of the tropical forest carbon cycle. Front Ecol Environ 9(1):9–17.

    Article  Google Scholar 

  • Turner BL, Haygarth PM. 2003. Changes in bicarbonate-extractable inorganic and organic phosphorus by drying pasture soils. Soil Sci Soc Am J 67:344–50.

    CAS  Google Scholar 

  • Turner BL, Engelbrecht BMJ. 2011. Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry 103:297–315.

    Article  CAS  Google Scholar 

  • United States Department of Agriculture. 2002. Soil Survey of Caribbean National Forest and Luquillo Experimental Forest, Commonwealth of Puerto Rico.

  • Vitousek PM. 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285–98.

    Article  CAS  Google Scholar 

  • Vitousek PM, Sanford RL Jr. 1986. Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–67.

    Article  Google Scholar 

  • Vitousek PM, Farrington H. 1997. Nutrient limitation and soil development: Experimental test of a biogeochemical theory. Biogeochemistry 37:63–75.

    Article  CAS  Google Scholar 

  • Vitousek PM, Chadwick O, Matson P, Allison S, Derry L, Kettley L, Luers A, Mecking E, Monastra V, Porder S. 2003. Erosion and the rejuvenation of weathering-derived nutrient supply in an old tropical landscape. Ecosystems 6:762–72.

    Article  CAS  Google Scholar 

  • Vitousek PM. 2004. Nutrient cycling and limitation: Hawai‘i as a model system. Princeton (NJ): Princeton University Press.

    Google Scholar 

  • Walker TW, Syers JK. 1976. The fate of phosphorus during pedogenesis. Geoderma 15:1–19.

    Article  CAS  Google Scholar 

  • Wardle DA, Walker LR, Bardgett RD. 2004. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–13.

    Article  PubMed  CAS  Google Scholar 

  • Weaver PL. 1991. Environmental gradients affect forest composition in the Luquillo Mountains of Puerto Rico. lnterciencia 16:142–51.

    Google Scholar 

  • White AF, Blum AE, Schulz MS, Vivit DV, Stonestrom DA, Larsen M, Murphy SF, Eberl D. 1998. Chemical weathering in a tropical watershed, Luquillo mountains, Puerto Rico: I. Long- term versus short-term weathering fluxes. Geochim Cosmochim Acta 62(2):209–26 (table headings).

    Article  CAS  Google Scholar 

  • Zarin DJ, Johnson AH. 1995. Nutrient accumulation during primary succession in a montane tropical forest, Puerto Rico. Soil Sci Soc Am J 59:1444–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Fred Scatena, Art Johnson, Miguel Leon, Hao Xing, John Clark, Zhuo Wang, Joanna Karaman, and Swee Lim for their expertise and assistance in the field. Laura Schreeg, Katie Amatangelo, Harmony Lu, Whendee Silver and two anonymous reviewers provided insightful comments on a previous version of this manuscript. This work was funded by the Andrew Mellon Foundation and NSF DEB 0918387 to SP, and NSF EAR 0722476 to the University of Pennsylvania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Porder.

Additional information

Author Contributions

SP and SM conceived the study, performed the research, analyzed the data, and wrote the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 165 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mage, S.M., Porder, S. Parent Material and Topography Determine Soil Phosphorus Status in the Luquillo Mountains of Puerto Rico. Ecosystems 16, 284–294 (2013). https://doi.org/10.1007/s10021-012-9612-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-012-9612-5

Keywords

Navigation