Skip to main content

Advertisement

Log in

Ecosystem Assembly: A Mission for Terrestrial Earth System Science

  • 20th Anniversary Paper
  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Organisms not only respond to their environment but also influence the availability of resources and change environmental conditions. Hence, the impacts of organisms on their environment shape the selective regimes that drive, on ecological time scales, the assembly of ecological communities and, on evolutionary time scales, diversification. Recent studies have drawn attention to the fact that feedbacks between organisms and the environment can prevent or induce catastrophic transitions in ecosystem states and argue that climate change increases the likelihood of such catastrophic regime shifts. Ecologists have very limited ability to predict the likelihood of such regime shifts or the properties of the ecosystems that assemble after such collapses. This is because ecology does not have a theory of ecosystem assembly, nor does it have an established way of translating such a theory into models capable of predicting future ecosystem states. Without knowing these potential endpoints, we cannot develop strategies for coercing ecosystems into desired states, severely constraining our capacity to mitigate climate change and climate change impacts. This paper outlines a roadmap for developing a theory of terrestrial ecosystem assembly. Recent progress in dynamic global vegetation modelling and community assembly provides a useful foundation for a theory of ecosystem assembly. Environmental filtering and limiting similarity are key principles, but to be useful, they need to be linked to resource consumption and environmental modulation, and be more strongly constrained by biophysics and the trade-offs defined by biophysical principles. Such a theory recognises that ecological and evolutionary history ensures that many different ecosystem assemblies are possible at any given point in space and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

References

  • Allesina S, Grilli J, Barabás G, Tang S, Aljadeff J, and Maritan A. 2015. Predicting the stability of large structured food webs. Nat Commun 6. doi:10.1038/ncomms8842.

  • Anderegg WRL, Anderegg LDL. (2013). Hydraulic and carbohydrate changes in experimental drought—induced mortality of saplings in two conifer species. Tree Physiol 33(3):252–260.

  • Angeler DG, Allen CR. (2016). Editorial: quantifying resilience. J Appl Ecol 53(3):617–624.

  • Asner GP, Levick SR, Kennedy-Bowdoin T, Knapp DE, Emerson R, Jacobson J, Colgan MS, Martin RE. (2009). Large-scale impacts of herbivores on the structural diversity of African savannas. Proc Natl Acad Sci USA 106(12):4947–4952.

  • Baskerville EB, Dobson AP, Bedford T, Allesina S, Anderson TM, Pascual M. (2011). Spatial guilds in the Serengeti food web revealed by a Bayesian group model. PLoS Comput Biol 7(12):e1002321.

  • Bidart-Bouzat MG. (2004). Herbivory modifies the lifetime fitness response of Arabidopsis thaliana to elevated CO2. Ecology 85(2):297–303.

  • Bond WJ, Maze K, Desmet P. (1995). Fire life histories and the seeds of chaos. Ecoscience 2(3):252–260.

  • Bowen JL, Ward BB, Morrison HG, Hobbie JE, Valiela I, Deegan LA, Sogin ML. (2011). Microbial community composition in sediments resists perturbation by nutrient enrichment. ISME J 5(9):1540–1548.

  • Bowman D. (2012). Conservation: bring elephants to Australia? Nature 482(7383):30.

  • Bradley KL, Pregitzer KS. (2007). Ecosystem assembly and terrestrial carbon balance under elevated CO2. Trends Ecol Evol 22(10):538–547.

  • Chase J, Leibold M. 2003. Ecological niches: linking classical and contemporary approaches. Interspecific interactions. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Courchamp F, Dunne JA, Le Maho Y, May RM, Thébaud C, Hochberg ME. 2015. Fundamental ecology is fundamental. Trends Ecol Evol 30(1):9–16.

    Article  PubMed  Google Scholar 

  • Crooks JA. 2002. Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97(2):153–66.

    Article  Google Scholar 

  • da Costa ACL, Galbraith D, Almeida S, Portela BTT, da Costa M, de Athaydes Silva Junior J, Braga AP, de Gonçalves PHL, de Oliveira AAR, Fisher R, Phillips OL, Metcalfe DB, Levy P, Meir P. 2010. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol 187(3):579–91.

    Article  PubMed  Google Scholar 

  • duToit JT, Rogers KH, Biggs HC, Sinclair ARE, Walker B. 2003. The Kruger experience: ecology and management of Savanna heterogeneity. Washington, DC: Island Press.

    Google Scholar 

  • Ellenberg H, Leuschner C. (2010). Vegetation Mitteleuropas mit den Alpen: in ökologischer, dynamischer und historischer Sicht. Ulmer, Stuttgart: UTB Uni-Taschenbücher.

  • Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essington TE, Holt RD, Jackson JBC, Marquis RJ, Oksanen L, Oksanen T, Paine RT, Pikitch EK, Ripple WJ, Sandin SA, Scheffer M, Schoener TW, Shurin JB, Sinclair ARE, Soulé ME, Virtanen R, Wardle DA. 2011. Trophic downgrading of planet earth. Science 333(6040):301–6.

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149(1):78–90.

    Article  CAS  PubMed  Google Scholar 

  • Foster D, Swanson F, Aber J, Burke I, Brokaw N, Tilman D, Knapp A. 2003. The importance of land-use legacies to ecology and conservation. Bioscience 53(1):77–88.

    Article  Google Scholar 

  • Golley F. 1993. A history of the ecosystem concept in ecology: more than the sum of the parts. New Haven: Yale University Press.

    Google Scholar 

  • Higgins SI, Bond WJ, Combrink H, Craine JM, February EC, Govender N, Lannas K, Moncreiff G, Trollope WSW. 2012. Which traits determine shifts in the abundance of tree species in a fire-prone savanna? J Ecol 100(6):1400–10.

    Article  Google Scholar 

  • Higgins SI, Scheiter S. 2012. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488(7410):209–12.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann WA, Orthen B, Vargas do Nascimento PK. 2003. Comparative fire ecology of tropical savanna and forest trees. Funct Ecol 17(6):720–6.

    Article  Google Scholar 

  • Hughes TP, Linares C, Dakos V, van de Leemput IA, van Nes EH. 2013. Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends Ecol Evol 28(3):149–55.

    Article  PubMed  Google Scholar 

  • Hunter DO, Britz T, Jones M, Letnic M. 2015. Reintroduction of Tasmanian devils to mainland Australia can restore top-down control in ecosystems where dingoes have been extirpated. Biol Conserv 191:428–35.

    Article  Google Scholar 

  • Jackson ST. 2006. Vegetation, environment, and time: the origination and termination of ecosystems. J Veg Sci 17(5):549–57.

    Article  Google Scholar 

  • Kooijman SALM. (2000). Dynamic energy and mass budgets in biological systems. Cambridge University Press.

  • Laughlin DC, Laughlin DE. 2013. Advances in modeling trait-based plant community assembly. Trends Plant Sci 18(10):584–93.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann CER, Anderson TM, Sankaran M, Higgins SI, Archibald S, Hoffmann WA, Hanan NP, Williams RJ, Fensham RJ, Felfili J, Hutley LB, Ratnam J, San Jose J, Montes R, Franklin D, Russell-Smith J, Ryan CM, Durigan G, Hiernaux P, Haidar R, Bowman DMJS, Bond WJ. 2014. Savanna vegetation-fire-climate relationships differ among continents. Science 343(6170):548–52.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann J, Kleber M. 2015. The contentious nature of soil organic matter. Nature 528:60–8.

    Article  CAS  PubMed  Google Scholar 

  • Linder HP, Bykova O, Dyke J, Etienne RS, Hickler T, Kühn I, Marion G, Ohlemüller R, Schymanski SJ, Singer A. 2012. Biotic modifiers, environmental modulation and species distribution models. J Biogeogr 39(12):2179–90.

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG. 2007. Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol Earth Syst Sci 11(2):1013–33.

    Article  Google Scholar 

  • McGlone MS. 2001. The origin of the indigenous grasslands of southeastern South Island in relation to pre-human woody ecosystems. N Z J Ecol 25(1):1–15.

    Google Scholar 

  • McMeans BC, McCann KS, Humphries M, Rooney N, Fisk AT. 2015. Food web structure in temporally-forced ecosystems. Trends Ecol Evol 30(11):662–72.

    Article  PubMed  Google Scholar 

  • Medlyn BE, Zaehle S, De Kauwe MG, Walker AP, Dietze MC, Hanson PJ, Hickler T, Jain AK, Luo Y, Parton W, Prentice IC, Thornton PE, Wang S, Wang YP, Weng E, Iversen CM, McCarthy HR, Warren JM, Oren R, Norby RJ. 2015. Using ecosystem experiments to improve vegetation models. Nat Climate Change 5(6):528–34.

    Article  Google Scholar 

  • Miranda M, Parrini F, Dalerum F. 2013. A categorization of recent network approaches to analyse trophic interactions. Methods Ecol Evol 4(10):897–905.

    Google Scholar 

  • Moncrieff GR, Lehmann CER, Schnitzler J, Gambiza J, Hiernaux P, Ryan CM, Shackleton CM, Williams RJ, Higgins SI. 2014a. Contrasting architecture of key African and Australian savanna tree taxa drives intercontinental structural divergence. Glob Ecol Biogeogr 23(11):1235–44.

    Article  Google Scholar 

  • Moncrieff GR, Scheiter S, Bond WJ, Higgins SI. 2014b. Increasing atmospheric CO2 overrides the historical legacy of multiple stable biome states in Africa. New Phytol 201(3):908–15.

    Article  CAS  PubMed  Google Scholar 

  • Monteith J, Unsworth M. 2007. Principles of environmental physics. Amsterdam: Elsevier Science.

    Google Scholar 

  • Niklas KJ, Spatz HC. 2012. Plant physics. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102(50):18052–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novak M, Wootton JT, Doak DF, Emmerson M, Estes JA, Tinker MT. 2011. Predicting community responses to perturbations in the face of imperfect knowledge and network complexity. Ecology 92(4):836–46.

    Article  PubMed  Google Scholar 

  • Owen-Smith N. 1987. Pleistocene extinctions: the pivotal role of megaherbivores. Paleobiology 13(3):351–62.

    Article  Google Scholar 

  • Pachzelt A, Forrest M, Rammig A, Higgins SI, Hickler T. 2015. Potential impact of large ungulate grazers on African vegetation, carbon storage and fire regimes. Glob Ecol Biogeogr 24(9):991–1002.

    Article  Google Scholar 

  • Parton WJ, Schimel DS, Cole CV, Ojima DS. 1987. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Sci Soc Am J 51:1173–9.

    Article  CAS  Google Scholar 

  • Phillips JD. 2007. The perfect landscape. Geomorphology 84(3–4):159–69.

    Article  Google Scholar 

  • Reynolds JJ, Lambin X, Massey FP, Reidinger S, Sherratt JA, Smith MJ, White A, Hartley SE. 2012. Delayed induced silica defences in grasses and their potential for destabilising herbivore population dynamics. Oecologia 170(2):445–56.

    Article  PubMed  Google Scholar 

  • Ricklefs RE. 1987. Community diversity: relative roles of local and regional processes. Science 235(4785):167–71.

    Article  CAS  PubMed  Google Scholar 

  • Scheiter S, Higgins SI. 2012. How many elephants can you fit into a conservation area. Conserv Lett 5(3):176–85.

    Article  Google Scholar 

  • Scheiter S, Langan L, Higgins SI. 2013. Next-generation dynamic global vegetation models: learning from community ecology. New Phytol 198(3):957–69.

    Article  PubMed  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56.

    Article  CAS  PubMed  Google Scholar 

  • Schrama M, Berg MP, Olff H. 2012. Ecosystem assembly rules: the interplay of green and brown webs during salt marsh succession. Ecology 93(11):2353–64.

    Article  PubMed  Google Scholar 

  • Schrama M, Jouta J, Berg MP, Olff H. 2013. Food web assembly at the landscape scale: using stable isotopes to reveal changes in trophic structure during succession. Ecosystems 16(4):627–38.

    Article  Google Scholar 

  • Sheffer E, Batterman SA, Levin SA, Hedin LO. 2015. Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle. Nat Plants 1:15182.

    Article  CAS  PubMed  Google Scholar 

  • Smith KW, Reed SC, Cleveland CC, Ballantyne AP, Anderegg WRL, Wieder WR, Liu YY, Running SW. 2016. Large divergence of satellite and earth system model estimates of global terrestrial CO2 fertilization. Nat Climate Change 6:306–10.

    Article  Google Scholar 

  • Spracklen DV, Arnold SR, Taylor CM. 2012. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489(7415):282–5.

    Article  CAS  PubMed  Google Scholar 

  • Van Der Plas F, Janzen T, Ordonez A, Fokkema W, Reinders J, Etienne RS, Olff H. 2015. A new modeling approach estimates the relative importance of different community assembly processes. Ecology 96(6):1502–15.

    Article  Google Scholar 

  • Waldram MS, Bond WJ, Stock WD. 2008. Ecological engineering by a mega-grazer: white rhino impacts on a South African savanna. Ecosystems 11(1):101–12.

    Article  Google Scholar 

  • Wardle DA, Barker GM, Yeates GW, Bonner KI, Ghani A. 2001. Introduced browsing mammals in New Zealand natural forests: aboveground and belowground consequences. Ecol Monogr 71(4):587–614.

    Article  Google Scholar 

  • Wiles GJ, Bart J, Beck RE Jr, Aguon CF. 2003. Impacts of the brown tree snake: patterns of decline and species persistence in Guam’s avifauna. Conserv Biol 17(5):1350–60.

    Article  Google Scholar 

  • Williamson P, International Geosphere Biosphere Programme. (1992). Global change: reducing uncertainties. Global change. International Geosphere–Biosphere Programme—A Study of Global Change, International Council of Scientific Unions.

Download references

Acknowledgements

SH acknowledges the Ecological Society of New Zealand for supporting a writing retreat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven I. Higgins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higgins, S.I. Ecosystem Assembly: A Mission for Terrestrial Earth System Science. Ecosystems 20, 69–77 (2017). https://doi.org/10.1007/s10021-016-0054-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-016-0054-3

Keywords

Navigation