Skip to main content

Advertisement

Log in

Habitat Complexity Enhances Comminution and Decomposition Processes in Urban Ecosystems

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Decomposition of organic matter is an essential process regulating fluxes of energy and matter within ecosystems. Although soil microbes drive decomposition, this is often facilitated by detritivores through comminution. The contribution of detritivores and microbes to comminution and decomposition processes is likely to be affected by the habitat complexity. In urban ecosystems, human activities and management of vegetation and litter and soil components determine habitat complexities unobserved in natural ecosystems. Therefore, we investigated the effect of habitat complexity of low- and high-complexity urban parks and high-complexity woodland remnants on microbial decomposition and detritivore comminution using litter bags of differing mesh size. Detritivores were sampled using pitfall traps and their assemblage structure related to rates of comminution. Habitats of lower complexity had significantly lower decomposition and comminution rates. In more complex habitats, site history did not affect decomposition and comminution processes. Vegetation complexity and the indirect effect on microclimate explained most of the variation in decomposition and comminution processes. The abundance of macrofauna detritivores and their species richness were both positively related to higher comminution rates. The volume of understory vegetation was the best predictor for both macrofauna detritivore assemblage structure and comminution and decomposition processes. The study demonstrated that relatively modest changes in habitat complexity associated with different management practices can exert significant effects on the decomposition and comminution processes. The structure of detritivores assemblages was also subjected to modifications of the habitat complexity with significant effects on comminution processes. Simple management practices aimed to increase the complexity of habitats, particularly in the understory vegetation and litter layers, could restore and enhance soil biodiversity and functioning in urban ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adair EC, Hobbie SE, Hobbie RK. 2010. Single-pool exponential decomposition models: potential pitfalls in their use in ecological studies. Ecology 91:1225–36.

    Article  PubMed  Google Scholar 

  • Ashford OS, Foster WA, Turner BL, Sayer EJ, Sutcliffe L, Tanner EVJ. 2013. Litter manipulation and the soil arthropod community in a lowland tropical rainforest. Soil Biol Biochem 62:5–12.

    Article  CAS  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S. 2014. lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-7. http://CRAN.R-project.org/package=lme4. Accessed 1 March 2015.

  • Bell SS, McCoy ED, Mushinsky HR. 1991. Habitat structure: the physical arrangement of objects in space. London: Chapman & Hall.

    Book  Google Scholar 

  • Bílá K, Moretti M, Bello F, Dias ATC, Pezzatti GB, Van Oosten AR, Berg MP. 2014. Disentangling community functional components in a litter-macrodetritivore model system reveals the predominance of the mass ratio hypothesis. Ecol Evol 4(4):408–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–35.

    Article  PubMed  Google Scholar 

  • Brennan KEC, Christie FJ, York A. 2009. Global climate change and litter decomposition: more frequent fire slows decomposition and increases the functional importance of invertebrates. Glob Change Biol 15:2958–71.

    Article  Google Scholar 

  • Brudvig LA, Grman E, Habeck CW, Orrock JL, Ledvina JA. 2013. Strong legacy of agricultural land use on soils and understory plant communities in longleaf pine woodlands. For Ecol Manag 310:944–55.

    Article  Google Scholar 

  • Buckingham S, Murphy N, Gibb H. 2015. The effects of fire severity on macroinvertebrate detritivores and leaf litter decomposition. PLoS ONE 10(4):e0124556.

    Article  PubMed  PubMed Central  Google Scholar 

  • Byrne LB. 2007. Habitat structure: a fundamental concept and framework for urban soil ecology. Urban Ecosyst 10:255–74.

    Article  Google Scholar 

  • Byrne LB, Bruns MA, Kim KC. 2008. Ecosystem properties of urban land covers at the aboveground-belowground interface. Ecosystems 11:1065–77.

    Article  Google Scholar 

  • Carreiro MM, Howe K, Parkhurst DF, Pouyat RV. 1999. Variation in quality and decomposability of red oak leaf litter along an urban-rural gradient. Biol Fertil Soils 30:258–68.

    Article  Google Scholar 

  • Chace JF, Walsh JJ. 2006. Urban effects on native avifauna: a review. Landsc Urban Plan 74:46–69.

    Article  Google Scholar 

  • Chen H, Gurmesa GA, Liu L, Zhang T, Fu S, Liu Z, Dong S, Ma C, Mo J. 2014. Effects of litter manipulation on litter decomposition in a successional gradients of tropical forests in southern China. PLoS ONE 9:e99018.

    Article  PubMed  PubMed Central  Google Scholar 

  • Collison EJ, Riutta T, Slade EM. 2013. Macrofauna assemblage composition and soil moisture interact to affect soil ecosystem functions. Acta Oecol 47:30–6.

    Article  Google Scholar 

  • Coulis M, Hättenschwiler S, Fromin N, David JF. 2013. Macroarthropod-microorganism interactions during the decomposition of Mediterranean shrub litter at different moisture levels. Soil Biol Biochem 64:114–21.

    Article  CAS  Google Scholar 

  • David JF, Ponge JF, Arpin P, Vannier G. 1991. Reactions of the macrofauna of a forest mull to experimental perturbations of litter supply. Oikos 61:316–26.

    Article  Google Scholar 

  • David JF. 2014. The role of litter-feeding macroarthropods in decomposition processes: a reappraisal of common views. Soil Biol Biochem 76:109–18.

    Article  CAS  Google Scholar 

  • da Silva AR, de Lima RP. 2015. Soilphysics—Soil physical analysis, R Package. https://cran.r-project.org/web/packages/soilphysics/.

  • De Rosario-Martinez H. 2013. Phia: post hoc interaction analysis. R package version 0.1-3.

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46.

    Article  Google Scholar 

  • Ebeling A, Meyer ST, Abbas M, Eisenhauer N, Hillebrand H, Lange M, Scherber C, Vogel A, Weigelt A, Weisser WW. 2014. Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods. PLoS ONE 9:e106529.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eisenhauer N, Yee K, Johnson EA, Maraun M, Parkinson D, Straube D, Scheu S. 2011. Positive relationship between herbaceous layer diversity and the performance of soil biota in a temperate forest. Soil Biol Biochem 43:462–5.

    Article  CAS  Google Scholar 

  • Facelli JM, Pickett STA. 1991. Plant Litter: its dynamics and effects on plant community structure. Bot Rev 57(1):1–32.

    Article  Google Scholar 

  • Garden JG, Mcalpine CA, Possingham HP, Jones DN. 2007. Habitat structure is more important than vegetation composition for local-level management of native terrestrial reptile and small mammal species living in urban remnants: a case study from Brisbane, Australia. Austral Ecol 32:669–85.

    Article  Google Scholar 

  • Geiger R, Aron RH, Todhunter P. 2003. The climate near the ground. 6th edn. Lanham, MD: Rowman and Littlefield Publishers.

    Google Scholar 

  • Gough C, Elliott HL. 2012. Lawn soil carbon storage in abandoned residential properties: an examination of ecosystem structure and function following partial human-natural decoupling. J Environ Manag 98:155–62.

    Article  CAS  Google Scholar 

  • Greenslade P. 2007. The potential of Collembola to act as indicators of landscape stress in Australia. Aust J Exp Agric 47(4):424–34.

    Article  Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM. 2008. Global change and the ecology of cities. Science 319:756–60.

    Article  CAS  PubMed  Google Scholar 

  • Haynes RJ, Dominy CS, Graham MH. 2003. Effect of agricultural land use on soil organic matter status and the composition of earthworm communities in KwaZulu-Natal, South Africa. Agric Ecosyst Environ 95(2–3):453–64.

    Article  Google Scholar 

  • Hansen RA. 1999. Red oak litter promotes a microarthropod functional group that accelerates its decomposition. Plant Soil 209:37–45.

    Article  CAS  Google Scholar 

  • Hansen RA. 2000. Effects of habitat complexity and composition on a diverse litter microarthropod assemblage. Ecology 81:1120–32.

    Article  Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S. 2005. Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Syst 36:191–218.

    Article  Google Scholar 

  • Heemsbergen DA, Berg MP, Loreau M, Van Hal JR, Faber JH, Verhoef HA. 2004. Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306:1019–20.

    Article  CAS  PubMed  Google Scholar 

  • Holm S. 1979. A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70.

    Google Scholar 

  • Joosse ENG, Verhoef HA. 1987. Developments in ecophysiological research on soil invertebrates. In: MacFadyen A, Ford ED, Eds. Advances in ecological research. London: Academic Press. p 175–249.

    Google Scholar 

  • Kallenbach CM, Grandy Stuart A. 2014. Land-use legacies regulate decomposition dynamics following bioenergy crop conversion. GCB Bioenergy . doi:10.1111/gcbb.12218.

    Google Scholar 

  • Koehler HH. 2000. Natural regeneration and succession—results from a 13 years study with reference to mesofauna and vegetation, and implications for management. Landsc Urban Plan 51:123–30.

    Article  Google Scholar 

  • Langellotto GA, Denno RF. 2004. Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139:1–10.

    Article  PubMed  Google Scholar 

  • Lawrence KL, Wise DH. 2000. Spider predation on forest-floor Collembola and evidence for indirect effects on decomposition. Pedobiologia 44:33–9.

    Article  Google Scholar 

  • Lewis DB, Kaye JP, Kinzig AP. 2014. Legacies of agriculture and urbanization in labile and stable organic carbon and nitrogen in Sonoran Desert soils. Ecosphere 5(5):59.

    Article  Google Scholar 

  • Lindsay EA, Cunningham SA. 2009. Livestock grazing exclusion and microhabitat variation affect invertebrates and decomposition rates in woodland remnants. For Ecol Manag 258:178–87.

    Article  Google Scholar 

  • Mazerolle MJ. 2015. AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package version 2.0-3. http://CRAN.R-project.org/package=AICcmodavg.

  • McDonnell MJ, Pickett STA. 1990. Ecosystem structure and function along urban-rural gradients: an unexploited opportunity for ecology. Ecology 71:1232–7.

    Article  Google Scholar 

  • McKinney ML. 2006. Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–60.

    Article  Google Scholar 

  • Nilsson MC, Wardle DA. 2005. Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Front Ecol Environ 3:421–8.

    Article  Google Scholar 

  • NSW Government. 2001. Soil survey standard test methods—particle size analysis. In: PSA-P7, method type B, version n.3. Department of Sustainable Natural Resources, New South Wales.

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. 2014. vegan: Community Ecology Package. R package version 2.2-0.

  • Oldfield EE, Warren RJ, Felson AJ, Bradford MA. 2013. FORUM: challenges and future directions in urban afforestation. J Appl Ecol 50:1169–77.

    Google Scholar 

  • Ossola A, Hahs AK, Livesley SJ. 2015a. Habitat complexity influences fine scale hydrological processes and the incidence of stormwater runoff in managed urban ecosystems. J Environ Manag 159:1–10.

    Article  Google Scholar 

  • Ossola A, Nash MA, Christie F, Hahs AK, Livesley SJ. 2015b. Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants. Peer J 3:e1356.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paoletti MG. 1999. The role of earthworms for assessment of sustainability and as bioindicators. Agric Ecosyst Environ 74(1–3):137–55.

    Article  Google Scholar 

  • Paoletti MG, Osler GHR, Kinnear A, Black DG, Thomson LJ, Tsitsilas A, Sharley D, Judd S, Neville P, D’Inca A. 2007. Detritivores as indicators of landscape stress and soil degradation. Aust J Exp Agric 47:412–23.

    Article  Google Scholar 

  • Pavao-Zuckerman MA, Coleman DC. 2005. Decomposition of chestnut oak (Quercus prinus) leaves and nitrogen mineralization in an urban environment. Biol Fertil Soils 41:343–9.

    Article  CAS  Google Scholar 

  • Peichl M, Arain AM, Moore TR, Brodeur JJ, Khomik M, Ullah S, Restrepo-Coupé N, McLaren J, Pejam MR. 2014. Carbon and greenhouse gas balances in an age sequence of temperate pine plantations. Biogeosciences 11(19):5399–410.

    Article  Google Scholar 

  • Pickett STA, Burch WR Jr, Dalton SE, Foresman TW, Grove JM, Rowntree R. 1997. A conceptual framework for the study of human ecosystems in urban areas. Urban Ecosyst 1:185–99.

    Article  Google Scholar 

  • Pickett STA, Cadenasso ML. 2009. Altered resources, disturbance, and heterogeneity: a framework for comparing urban and non-urban soils. Urban Ecosyst 12:23–44.

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. 2015. nlme: linear and nonlinear mixed effects models. R package version 3.1-120, http://CRAN.R-project.org/package=nlme. Accessed 1 March 2015.

  • Ponsard S, Arditi R, Jost C. 2000. Assessing top-down and bottom-up control in a litter-based soil macroinvertebrate food chain. Oikos 89:524–40.

    Article  Google Scholar 

  • Pouyat RV, McDonnell MJ, Pickett STA. 1997. Litter decomposition and nitrogen mineralization in oak stands along an urban-rural land use gradient. Urban Ecosyst 1:117–31.

    Article  Google Scholar 

  • Prach K, Pyšek P. 2001. Using spontaneous succession for restoration of human-disturbed habitats: experience from Central Europe. Ecol Eng 17:55–62.

    Article  Google Scholar 

  • R Core Team. 2012. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org.

  • Riutta T, Slade EM, Bebber DP, Taylor ME, Malhi Y, Riordan P, Macdonald DW, Morecroft MD. 2012. Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biol Biochem 49:124–31.

    Article  CAS  Google Scholar 

  • Savva Y, Szlavecz K, Pouyat RV, Groffman PM, Heisler G. 2010. Effects of land use and vegetation cover on soil temperature in an urban ecosystem. Soil Sci Soc Am J 74:469–80.

    Article  CAS  Google Scholar 

  • Sayer EJ, Sutcliffe LME, Ross RIC, Tanner EVJ. 2010. Arthropod abundance and diversity in a lowland tropical forest floor in Panama: the role of habitat space vs. nutrient concentrations. Biotropica 42:194–200.

    Article  Google Scholar 

  • Sayer EJ, Tanner EVJ, Lacey AL. 2006. Effects of litter manipulation on early-stage decomposition and meso-arthropod abundance in a tropical moist forest. For Ecol Manag 229:285–93.

    Article  Google Scholar 

  • Schmidt P, Dickow K, Alinéia Rocha A, Marques R, Scheuermann L, Römbke J, Förster B, Höfer H. 2008. Soil macrofauna and decomposition rates in southern Brazilian Atlantic rainforest. Ecotropica 14:89–100.

    Google Scholar 

  • Shochat E, Stefanov WL, Whitehouse MEA, Faeth SH. 2004. Urbanization and spider diversity: influences of human modification of habitat structure and productivity. Ecol Appl 14:268–80.

    Article  Google Scholar 

  • Six J, Callewaert P, Lenders S, De Gryze S, Morris SJ, Gregorich EG, Paul EA, Paustian K. 2002. Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Sci Soc Am J 66:1981–7.

    Article  CAS  Google Scholar 

  • Slade EM, Riutta T. 2012. Interacting effects of leaf litter species and macrofauna on decomposition in different litter environments. Basic Appl Ecol 13:423–31.

    Article  Google Scholar 

  • Vasconcelos HL, Laurance WF. 2005. Influence of habitat, litter type, and soil invertebrates on leaf-litter decomposition in a fragmented Amazonian landscape. Oecologia 144:456–62.

    Article  PubMed  Google Scholar 

  • VEAC. 2009. Biodiversity of Metropolitan Melbourne. Victorian Environmental Assessment Council. Melbourne, VIC.

  • Villegas JC, Breshears DD, Zou CB, Law DJ. 2010. Ecohydrological controls of soil evaporation in deciduous drylands: how the hierarchical effects of litter, patch and vegetation mosaic cover interact with phenology and season. J Arid Environ 74:595–602.

    Article  Google Scholar 

  • Wall DH, Bradford MA, St. John MG, Trofymow JA, Behan-Pelletier V, Bignell DE, Dangerfield JM, Parton WJ, Rusek J, Voigt W, Wolters V, Gardel HZ, Ayuke FO, Bashford R, Beljakova OI, Bohlen PJ, Brauman A, Flemming S, Henschel JR, Johnson DL, Jones TH, Kovarova M, Kranabetter JM, Kutny LES, Lin KC, Maryati M, Masse D, Pokarzhevskii A, Rahman H, Sabará MG, Salamon JA, Swift MJ, Varela A, Vasconcelos HL, White DON, Zou X. 2008. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob Change Biol 14:2661–77.

    Google Scholar 

  • Wilke BM. 2005. Determination of chemical and physical soil properties. In: Margesin R, Schinner F, Eds. Manual of soil analysis. Monitoring and assessing soil bioremediation. Heidelberg: Springer. p 47–94.

    Chapter  Google Scholar 

  • Zhao J, Wang X, Shao Y, Xu G, Fu S. 2011. Effects of vegetation removal on soil properties and decomposer organisms. Soil Biol Biochem 43:954–60.

    Article  CAS  Google Scholar 

  • Zipperer WC. 2002. Species composition and structure of regenerated and remnant forest patches within an urban landscape. Urban Ecosyst 6:271–90.

    Article  Google Scholar 

  • Zuur A, Ieno EN, Walker N, Saveiliev AA, Smith GM. 2009. Mixed effects models and extensions in ecology with R. New York: Springer.

    Book  Google Scholar 

Download references

Acknowledgements

This project was funded by the Australian Research Council (ARC LP 110100686), the Australian Golf Course Superintendent Association (AGCSA), the Australian Research Centre for Urban Ecology (ARCUE), and the Frank Keenan Fund Trust. The authors declare that they have no conflict of interest. AO is supported by MIFRS and MIRS scholarships. AKH is supported by the Baker Foundation. Dr. Caragh Threlfall and Lee Wilson provided valuable assistance during field work and Dr. Robert Mesibov (Queen Victoria Museum and Art Gallery, Hobart, Tasmania) confirmed our macrofauna detritivore identifications. Comments by Prof. Heikki Setälä, Dr. Fiona Christie, and two anonymous reviewers greatly improved the manuscript. We are also grateful to the AGSCA Members and the Municipalities of Kingston, Frankston, and Greater Dandenong for their collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Ossola.

Additional information

Author contributions

AO, AKH, and SJL conceived of the study design. AO performed the research. AO, AKH, and MAN analyzed the data. AO wrote the paper with scientific and editorial review by AKH, MAN, and SJL.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ossola, A., Hahs, A.K., Nash, M.A. et al. Habitat Complexity Enhances Comminution and Decomposition Processes in Urban Ecosystems. Ecosystems 19, 927–941 (2016). https://doi.org/10.1007/s10021-016-9976-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-016-9976-z

Keywords

Navigation