Skip to main content

Advertisement

Log in

Multi-Scale Temporal Patterns in Stream Biogeochemistry Indicate Linked Permafrost and Ecological Dynamics of Boreal Catchments

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Temporal patterns in stream chemistry provide integrated signals describing the hydrological and ecological state of whole catchments. However, stream chemistry integrates multi-scale signals of processes occurring in both the catchment and stream. Deconvoluting these signals could identify mechanisms of solute transport and transformation and provide a basis for monitoring ecosystem change. We applied trend analysis, wavelet decomposition, multivariate autoregressive state-space modeling, and analysis of concentration–discharge relationships to assess temporal patterns in high-frequency (15 min) stream chemistry from permafrost-influenced boreal catchments in Interior Alaska at diel, storm, and seasonal time scales. We compared catchments that varied in spatial extent of permafrost to identify characteristic biogeochemical signals. Catchments with higher spatial extents of permafrost were characterized by increasing nitrate concentration through the thaw season, an abrupt increase in nitrate and fluorescent dissolved organic matter (fDOM) and declining conductivity in late summer, and flushing of nitrate and fDOM during summer rainstorms. In contrast, these patterns were absent, of lower magnitude, or reversed in catchments with lower permafrost extent. Solute dynamics revealed a positive influence of permafrost on fDOM export and the role of shallow, seasonally dynamic flowpaths in delivering solutes from high-permafrost catchments to streams. Lower spatial extent of permafrost resulted in static delivery of nitrate and limited transport of fDOM to streams. Shifts in concentration–discharge relationships and seasonal trends in stream chemistry toward less temporally dynamic patterns might therefore indicate reorganized catchment hydrology and biogeochemistry due to permafrost thaw.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

URL for applicable data: https://doi.org/10.6073/pasta/f8471eaea9705f4753b510829895a8e3

References

  • Alexander HD, Mack MC. 2016. A Canopy Shift in Interior Alaskan Boreal Forests: Consequences for Above- and Belowground Carbon and Nitrogen Pools during Post-fire Succession. Ecosystems 19:98–114.

    Article  CAS  Google Scholar 

  • Balcarczyk KL, Jones JB, Jaffé R, Maie N. 2009. Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost. Biogeochemistry 94:255–270.

    Article  CAS  Google Scholar 

  • Bernhardt ES, Likens GE, Hall RO, Buso DC, Fisher SG, Burton TM, Meyer JL, McDowell WH, Mayer MS, Bowden WB, Findlay SEG, Macneale KH, Stelzer RS, Lowe WH. 2005. Can’t See the Forest for the Stream? The capacity of instream processing to modify terrestrial nitrogen exports. Bioscience 52:219–230.

    Article  Google Scholar 

  • Betts EF, Jones JB. 2009. Impact of Wildfire on Stream Nutrient Chemistry and Ecosystem Metabolism in Boreal Forest Catchments of Interior Alaska. Arctic Antarct Alpine Res 41:407–417.

    Article  Google Scholar 

  • Bintanja R, van der Wiel K, van der Linden EC, Reusen J, Bogerd L, Krikken F, Selten FM. 2020. Strong future increases in Arctic precipitation variability linked to poleward moisture transport. Sci Adv 6:eaax869.

    Article  Google Scholar 

  • Brown DRN, Jorgenson MT, Douglas TA, Romanovsky V, Kielland K, Euskirchen E. 2015. Interactive effects of wildfire and climate on permafrost degradation in Alaskan lowland forests. J Geophys Res Biogeosci 120:8.

    Article  Google Scholar 

  • Bolton W, Hinzman L, Yoshikawa K. 2004. Water balance dynamics of three small catchments in a Sub-Arctic boreal forest. IAHS-AISH Publication:213–223.

  • Boshers DS, Granger J. 2019. Constraining the oxygen isotopic composition of nitrate produced by nitrification. Environ Sci Technol 53:1206–1216.

    Article  CAS  PubMed  Google Scholar 

  • Brookshire E, Valett HM, Gerber S. 2009. Maintenance of terrestrial nutrient loss signatures during in-stream transport. Ecology 90:293–299.

    Article  CAS  PubMed  Google Scholar 

  • Bugmann HKM, Wullschleger SD, Price DT, Ogle K, Clark DF, Solomon AM. 2001. Comparing the performance of forest gap models in North America. Climatic Change 51:349–388.

    Article  Google Scholar 

  • Burns DA, Pellerin BA, Miller MP, Capel PD, Tesoriero AJ, Duncan JM. 2019. Monitoring the riverine pulse: Applying high-frequency nitrate data to advance integrative understanding of biogeochemical and hydrological processes. Wiley Interdiscip Rev 6:e1348.

    Google Scholar 

  • Casciotti KL, Sigman DM, Hastings MG, Böhlke JK, Hilkert A. 2002. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem 74:4905–4912.

    Article  CAS  PubMed  Google Scholar 

  • Czikowsky MJ, Fitzjarrald DR. 2004. Evidence of seasonal changes in evapotranspiration in eastern U.S. hydrological records. J Hydrometeorol 5:974–988.

    Article  Google Scholar 

  • Douglas TA, Blum JD, Guo L, Keller K, Gleason JD. 2013. Hydrogeochemistry of seasonal flow regimes in the Chena River, a subarctic watershed draining discontinuous permafrost in interior Alaska (USA). Chem Geol 335:48–62.

    Article  CAS  Google Scholar 

  • Douglas TA, Turetsky MR, Koven CD. 2020. Increased rainfall stimulates permafrost thaw across a variety of Alaskan ecosystems. Nat Climate Atmos Sci 3:28.

    Article  Google Scholar 

  • Downing BD, Pellerin BA, Bergamaschi BA, Saraceno JF, Kraus TEC. 2012. Seeing the light: The effects of particles, dissolved materials, and temperature on in situ measurements of DOM fluorescence in rivers and streams. Limnol Oceanogr Methods 10:767–775.

    Article  CAS  Google Scholar 

  • Duncan JM, Band LE, Groffman PM, Bernhardt ES. 2015. Mechanisms driving the seasonality of catchment scale nitrate export: Evidence for riparian ecohydrologic controls. Water Resour Res 51:3982–3997.

    Article  Google Scholar 

  • Dupas R, Abbott BW, Minaudo C, Fovet O. 2019. Distribution of landscape units within catchments influences nutrient export dynamics. Frontiers Environ Sci 7:43.

    Article  Google Scholar 

  • Flewelling SA, Hornberger GM, Herman JS, Mills AL, Robertson WM. 2013. Diel patterns in coastal-stream nitrate concentrations linked to evapotranspiration in the riparian zone of a low-relief, agricultural catchment. Hydrol Processes 28:2150–2158.

    Article  CAS  Google Scholar 

  • Fork ML, Sponseller RA, Laudon H. 2020. Changing source-transport dynamics drive differential browning trends in a boreal stream network. Water Resour Res 56:2.

    Article  Google Scholar 

  • Fuka DR, Walter MT, Archibald JA, Steenhuis TS, Easton ZM. 2018. EcoHydRology: A Community Modeling Foundation for Eco-Hydrology. R package version 0.4.12.1.

  • Giling D, Bond N. 2020. BASEmetab: Estimate Single-station Whole-stream Metabolic Rates from Diel Dissolved Oxygen Curves. R package version 3.0.

  • Gough LP, Crock JG, Wang B, Day WC, Eberl DD, Sanzolone RF, Lamothe PJ. 2008. Substrate Geochemistry and Soil Development in Boreal Forest and Tundra Ecosystems in the Yukon-Tanana Upland and Seward Peninsula, Alaska. USGS: pubs.er.usgs.gov/usgspubs/sir/sir20085010.

  • Grace MR, Giling DP, Hladyz S, Caron V, Thompson RM, Mac Nally R. 2015. Fast processing of diel oxygen curves: Estimating stream metabolism with base (BAyesian single-station estimation). Limnol Oceanogr Methods 13:103–114.

    Article  Google Scholar 

  • Hall RO, Tank JL, Baker MA, Rosi-Marshall EJ, Hotchkiss ER. 2016. Metabolism, Gas Exchange, and Carbon Spiraling in Rivers. Ecosystems 19:73–86.

    Article  CAS  Google Scholar 

  • Harden JW, Koven CD, Ping CL, Hugelius G, David McGuire A, Camill P, Jorgenson T, Kuhry P, Michaelson GJ, O’Donnell JA, Schuur EAG, Tarnocai C, Johnson K, Grosse G. 2012. Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys Res Lett 39:1–6.

    Article  CAS  Google Scholar 

  • Harms TK, Jones JB. 2012. Thaw depth determines reaction and transport of inorganic nitrogen in valley bottom permafrost soils. Global Change Biol 18:2958–2968.

    Article  Google Scholar 

  • Harms TK, Edmonds JW, Genet H, Creed IF, Aldred D, Balser A, Jones JB. 2016. Catchment influence on nitrate and dissolved organic matter in Alaskan streams across a latitudinal gradient. J Geophys Res Biogeosci 121:350–369.

    Article  CAS  Google Scholar 

  • Haugen RK, Slaughter CW, Howe KE, Dingman SL. 1982. Hydrology and climatology of the Caribou-Poker Creek Research Watershed, Alaska.

  • Hinzman LD, Fukuda M, Sandberg DV, Chapin FS, Dash D. 2003. FROSTFIRE: An experimental approach to predicting the climate feedbacks from the changing boreal fire regime. J Geophys Res 108:1996–2001.

    Google Scholar 

  • Holmes EE, Ward EJ, Scheuerell M, Wills K. 2018. Package ‘MARSS’. R package version 3.10.12. Available at https://cran.r-project.org/web/packages/MARSS/MARSS.pdf.

  • Iwata H, Harazono Y, Ueyama M. 2012. The role of permafrost in water exchange of a black spruce forest in Interior Alaska. Agric Forest Meteorol 161:107–115.

    Article  Google Scholar 

  • James SR, Knox HA, Abbott RE, Panning MP, Screaton EJ. 2019. Insights Into Permafrost and Seasonal Active-Layer Dynamics From Ambient Seismic Noise Monitoring. J Geophys Res Earth Surface 124:1798–1816.

    Article  Google Scholar 

  • Johnstone JF, Chapin FS, Hollingsworth TN, Mack MC, Romanovsky V, Turetsky M. 2010. Fire, climate change, and forest resilience in interior Alaska. Can J Forest Res 40:1302–1312.

    Article  Google Scholar 

  • Jones CS, Wang B, Schilling KE, Chan K. 2017. Nitrate transport and supply limitations quantified using high-frequency stream monitoring and turning point analysis. J Hydrol 549:581–591.

    Article  CAS  Google Scholar 

  • Jorgenson MT, Romanovsky V, Harden J, Shur Y, O’Donnell J, Schuur EAG, Kanevskiy M, Marchenko S. 2010. Resilience and vulnerability of permafrost to climate change. Can J Forest Res 40:1219–1236.

    Article  Google Scholar 

  • Keller K, Blum JD, Kling GW. 2007. Geochemistry of soils and streams on surfaces of varying ages in arctic Alaska. Arctic Antarct Alpine Res 39:84–98.

    Article  Google Scholar 

  • Keller K, Blum JD, Kling GW. 2010. Stream geochemistry as an indicator of increasing permafrost thaw depth in an arctic watershed. Chem Geol 273:76–81.

    Article  CAS  Google Scholar 

  • Kendall C, Elliott EM, Wankel SD. 2007. Tracing anthropogenic inputs of nitrogen to ecosystems. Stable Isotopes Ecol Environ Sci 2:375–449.

    Article  Google Scholar 

  • Klingensmith K, Van Cleve K. 1993. Patterns of nitrogen mineralization and nitrification in floodplain successional soils along the Tanana River, Interior Alaska. Can J Forest Res 23:964–969.

    Article  CAS  Google Scholar 

  • Koch JC, Ewing SA, Striegl R, McKnight DM. 2013. Rapid runoff via shallow throughflow and deeper preferential flow in a boreal catchment underlain by frozen silt (Alaska, USA). Hydrogeol J 21:93–106.

    Article  Google Scholar 

  • Koch JC, Kikuchi CP, Wickland KP, Schuster P. 2014. Runoff sources and flow paths in a partially burned, upland boreal catchment underlain by permafrost. Water Resour Res 50:8141–8158.

    Article  Google Scholar 

  • Koch JC, Toohey RC, Reeves DM. 2017. Tracer-based evidence of heterogeneity in subsurface flow and storage within a boreal hillslope. Hydrol Processes 31:2453–2463.

    Article  Google Scholar 

  • Kokelj SV, Burn CR. 2005. Geochemistry of the active layer and near-surface permafrost, Mackenzie delta region, Canada. Can J Earth Sci 42:37–48.

    Article  CAS  Google Scholar 

  • Kirchner JW, Feng X, Neal C, Robson AJ. 2004. The fine structure of water-quality dynamics: The (high-frequency) wave of the future. Hydrolo Process 18:1353–1359.

    Article  Google Scholar 

  • Kirchner JW, Neal C. 2013. Universal fractal scaling in stream chemistry and its implications for solute transport and water quality trend detection. Proc Natl Acad Sci 110:12213–12218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavoie M, Mack MC, Schuur EAG. 2011. Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal soils. J Geophys Res Biogeosci 116:1–14.

    Article  CAS  Google Scholar 

  • Likens GE, Bormann FH, Johnson NM, Fisher D, Robert S. 1970. Effects of Forest Cutting and Herbicide Treatment on Nutrient Budgets in the Hubbard Brook Watershed-Ecosystem. Ecol Monogr 40:23–47.

    Article  Google Scholar 

  • Lloyd CEM, Freer JE, Johnes PJ, Collins AL. 2016. Using hysteresis analysis of high-resolution water quality monitoring data, including uncertainty, to infer controls on nutrient and sediment transfer in catchments. Sci Total Environ 543:388–404.

    Article  CAS  PubMed  Google Scholar 

  • Lucas RW, Sponseller RA, Gundale MJ, Stendahl J, Fridman J, Högberg P, Laudon H. 2016. Long-term declines in stream and river inorganic nitrogen (N) export correspond to forest change. Ecol Appl 26:545–556.

    Article  PubMed  Google Scholar 

  • McFarland J, Ruess R, Kielland K, Doyle A. 2002. Cycling Dynamics of NH4+ and Amino Acid Nitrogen in Soils of a Deciduous Boreal Forest Ecosystem. Ecosystems 5:775–788.

    CAS  Google Scholar 

  • McGuire KJ, McDonnell JJ. 2006. A review and evaluation of catchment transit time modeling. J Hydrol 330:543–563.

    Article  Google Scholar 

  • Melvin AM, Mack MC, Johnstone JF, McGuire AD, Genet H, Schuur EA. 2015. Differences in ecosystem carbon distribution and nutrient cycling linked to forest tree species composition in a mid-successional boreal forest. Ecosystems 18:1472–1488.

    Article  CAS  Google Scholar 

  • Mutschlecner AE, Guerard JJ, Jones JB, Harms TK. 2018. Phosphorus Enhances Uptake of Dissolved Organic Matter in Boreal Streams. Ecosystems 21:675–688.

    Article  CAS  Google Scholar 

  • Nimick DA, Gammons CH, Parker SR. 2011. Diel biogeochemical processes and their effect on the aqueous chemistry of streams: A review. Chem Geol 283:3–17.

    Article  CAS  Google Scholar 

  • Odum HT. 1956. Primary production in flowing waters. Limnol Oceanogr 1:102–117.

    Article  Google Scholar 

  • Pardo LH, Driscoll CT, Likens GE. 1995. Patterns of nitrate loss from a chronosequence of clear-cut watersheds. Water Air Soil Pollut 85:1659–1664.

    Article  CAS  Google Scholar 

  • Petrone KC, Jones JB, Hinzman LD, Boone RD. 2006. Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost. J Geophys Res Biogeosci 111:1–13.

    Article  Google Scholar 

  • Petrone KC, Hinzman LD, Shibata H, Jones JB, Boone RD. 2007. The influence of fire and permafrost on sub-arctic stream chemistry during storms. Hydrol Process 21:423–434.

    Article  CAS  Google Scholar 

  • Ping CL, Michaelson GJ, Kane ES, Packee EC, Stiles CA, Swanson DK, Zaman ND. 2010. Carbon Stores and Biogeochemical Properties of Soils under Black Spruce Forest, Alaska. Soil Sci Soc Am J 74:969–978.

    Article  CAS  Google Scholar 

  • Rinehart AJ, Jones JB, Harms TK. 2015. Hydrologic and biogeochemical influences on carbon processing in the riparian zone of a subarctic stream. Freshwater Sci 34:222–232.

    Article  Google Scholar 

  • Roesch A, Schmidbauer H. 2018. WaveletComp. R package version 1.1.

  • Rollinson CR, Liu Y, Raiho A, Moore DJP, McLachlan J, Bishop DA, Dye A, Matthes JH, Hessl A, Hickler T, Pederson N, Poulter B, Quaife T, Schaefer K, Steinkamp J, Dietze MC. 2017. Emergent climate and CO2 sensitivities of net primary productivity in ecosystem models do not agree with empirical data in temperate forests of eastern North America. Glob Chang Biol 23:2755–2767.

    Article  PubMed  Google Scholar 

  • Ruosteenoja K, Räisänen J, Venäläinen A, Kämäräinen M. 2016. Projections for the duration and degree days of the thermal growing season in Europe derived from CMIP5 model output. Int J Clim 36:3039–3055.

    Article  Google Scholar 

  • Salmon VG, Soucy P, Mauritz M, Celis G, Natali SM, Mack MC, Schuur EAG. 2016. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw. Glob Chang Biol 22:1927–1941.

    Article  PubMed  Google Scholar 

  • Schwab M, Klaus J, Pfister L, Weiler M. 2016. Diel discharge cycles explained through viscosity fluctuations in riparian inflow. Water Resour Res 52:8744–8755.

    Article  Google Scholar 

  • Schuur EAG, McGuire AD, Schädel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE. 2015. Climate change and the permafrost carbon feedback. Nature 520:171–179.

    Article  CAS  PubMed  Google Scholar 

  • Ueyama M, Iwata H, Harazono Y, Euskirchen ES, Oechel WC, Zona D. 2013. Growing season and spatial variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA). Ecol Appl 23:1798–1816.

    Article  PubMed  Google Scholar 

  • van Cleve K, Chapin FS, Dyrness CT, Viereck LA. 1991. Element Cycling in Taiga Forests: State-Factor Control. BioScience 41:78–88.

    Article  Google Scholar 

  • Vaughan MCH, Bowden WB, Shanley JB, Vermilyea A, Sleeper R, Gold AJ, Pradhanang SM, Inamdar SP, Levia DF, Andres AS, Birgand F, Schroth A. 2017. High-frequency dissolved organic carbon and nitrate measurements reveal differences in storm hysteresis and loading in relation to land cover and seasonality. Water Resour Res 53:5345–5363.

    Article  CAS  Google Scholar 

  • Verplanck PL, Mueller SH, Youcha EK, Goldfarb RJ, Sanzolone RF, McCleskey RB, Briggs PH, Roller M, Adams M, Nordstrom DK. 2003. Chemical Analyses of Ground and Surface Waters, Ester Dome, Cental Alaska, 2000–2001. U.S. Geological Survey Open-File Report 03–244 (available at https://pubs.usgs.gov/of/2003/ofr-03-244/).

  • Watras CJ, Hanson PC, Stacy TL, Morrison KM, Mather J, Hu YH, Milewski P. 2011. A temperature compensation method for CDOM fluorescence sensors in freshwater. Limnol Oceanogr Methods 9:296–301.

    Article  CAS  Google Scholar 

  • Williams GP. 1989. Sediment concentration versus water discharge during single hydrologic events. J Hydrol 111:89–106.

    Article  Google Scholar 

  • Wolken JM, Hollingsworth TN, Rupp TS, Chapin III FS, Trainor SF, Barrett TM, Sullivan PF, McGuire AD, Euskirchen ES, Hennon PE, Beever EA, Conn JS, Crone LK, D’Amore DV, Fresco N, Hanley TA, Kielland K, Kruse JJ, Patterson T, Schuur EAG, Verbyla DL, Yarie J. 2011. Evidence and implications of recent and projected climate change in Alaska’s forest ecosystems. Ecosphere 2:art124.

  • Yi S, McGuire AD, Harden J, Kasischke E, Manies K, Hinzman L, Liljedahl A, Randerson J, Liu H, Romanovsky V, Marchenko S, Kim Y. 2009. Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance. J Geophys Res: Biogeosci 114:1–20.

    Google Scholar 

  • Yoshikawa K, White DM, Hinzman LD, Goering DJ, Petrone KC, Bolton WR, Ishikawa N. 2003. Water in permafrost: Case study of aufeis and pingo hydrology in discontinuous permafrost. Proceedings of the Int. Conference on Permafrost. Zurich, Switzerland 1259–64.

Download references

Acknowledgements

We thank Audrey Krehlik and Margaret Zahrah for their contributions to data collection. Funding was provided by the Department of Defense Strategic Environmental Research and Development Program (RC-2507 to TKH & TAD); the Bonanza Creek Long-Term Ecological Research Program, supported by the National Science Foundation (DEB-1636476) and by the USDA Forest Service, Pacific Northwest Research Station (RJVA-PNW-01-JV-11261952-231); and a Pathfinder Grant from the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (to PR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex J. Webster.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webster, A.J., Douglas, T.A., Regier, P. et al. Multi-Scale Temporal Patterns in Stream Biogeochemistry Indicate Linked Permafrost and Ecological Dynamics of Boreal Catchments. Ecosystems 25, 1189–1206 (2022). https://doi.org/10.1007/s10021-021-00709-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-021-00709-6

Keywords

Navigation