Skip to main content

Advertisement

Log in

Whole-Ecosystem Warming Increases Plant-Available Nitrogen and Phosphorus in an Ombrotrophic Bog

  • Original Article
  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Warming is expected to increase the net release of carbon from peatland soils, contributing to future warming. This positive feedback may be moderated by the response of peatland vegetation to rising atmospheric [CO2] or to increased soil nutrient availability. We asked whether a gradient of whole-ecosystem warming (from + 0 °C to + 9 °C) would increase plant-available nitrogen and phosphorus in an ombrotrophic bog in northern Minnesota, USA, and whether elevated [CO2] would modify the nutrient response. We tracked changes in plant-available nutrients across space and through time and in comparison with other nutrient pools, and assessed whether nutrient warming responses were captured by a point version of the land-surface model, ELM-SPRUCE. We found that warming exponentially increased plant-available ammonium and phosphate, but that nutrient dynamics were unaffected by elevated [CO2]. The warming response increased by an order of magnitude between the first and fourth year of the experimental manipulation, perhaps because of dramatic mortality of Sphagnum mosses in the surface peat of the warmest treatments. However, neither the magnitude nor the temporal dynamics of the responses were captured by ELM-SPRUCE. Relative increases in plant-available ammonium and phosphate with warming were similar, but the response varied across raised hummocks and depressed hollows and with peat depth. Plant-available nutrient dynamics were only loosely correlated with inorganic and organic porewater nutrients, likely representing different processes. Future predictions of peatland nutrient availability under climate change scenarios must account for dynamic changes in nutrient acquisition by plants and microbes, as well as microtopography and peat depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data Availability

Data presented in this manuscript have been appended to: Iversen CM, Latimer J, Burnham A, Brice DJ, Childs J, Vander Stel HM. 2017. SPRUCE plant-available nutrients assessed with ion-exchange resins in experimental plots, beginning in 2013. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. Data set accessed at http://dx.doi.org/10.3334/CDIAC/spruce.036

References

  • Aerts R, Cornelissen JHC, Dorrepaal E. 2006. Plant performance in a warmer world: General responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecology 182:65–77.

    Google Scholar 

  • AminiTabrizi R, Dontsovaa K, Graf Gracheta N, Tfaily MM. 2022. Elevated temperatures drive abiotic and biotic degradation of organic matter in a peat bog under oxic conditions. Science of the Total Environment 804:150045.

    Article  CAS  PubMed  Google Scholar 

  • APHA. 2017. Standard methods for the examination of water and wastewater, 23rd edn. DC: Washington.

    Google Scholar 

  • Bähring A, Fichtner A, Friedrich U, von Oheimb G, Härdtle W. 2017. Bryophytes and organic layers control uptake of airborne nitrogen in low-N environments. Frontiers in Plant Science 8:2080.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbier C, Hanson PJ, Todd DE, Belcher D, Jekabson EW, Thomas WK, Riggs J. 2013. Air flow and heat transfer in a temperature-controlled open top enclosure. American Society of Mechanical Engineers 7:9780791845233.

    Google Scholar 

  • Berendse F, Van Breemen N, Rydin H, Buttler A, Heijmans M, Hoosbeek MR, Lee JA, Mitchell E, Saarinen T, Vasander H, Wallén B. 2001. Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biology 7:591–598.

    Article  Google Scholar 

  • Bourbonniere RA. 2009. Review of water chemistry research in natural and disturbed peatlands. Canadian Water Resources Journal 34:393–414.

    Article  Google Scholar 

  • Bragazza L, Freeman C, Jones T, Rydin H, Limpens J, Fenner N, Ellis T, Gerdol R, Hájek M, Hájek T, Iacumin P, Kutnar L, Tahvanainen T, Toberman H. 2006. Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proceedings of the National Academy of Sciences of the United States of America 103:19386–19389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bragazza L, Parisod J, Buttler A, Bardgett RD. 2013. Biogeochemical plant–soil microbe feedback in response to climate warming in peatlands. Nature Climate Change 3:273–277.

    Article  CAS  Google Scholar 

  • Bridgham SD, Updegraff K, Pastor J. 1998. Carbon, nitrogen, and phosphorus mineralization in northern wetlands. Ecology 79:1545–1561.

    Article  Google Scholar 

  • Bridgham SD, Updegraff K, Pastor J. 2001. A comparison of nutrient availability indices along an ombrotrophic-minerotrophic gradient in Minnesota wetlands. Soil Science Society of America Journal 65:259–269.

    Article  CAS  Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C. 2006. The carbon balance of North American wetlands. Wetlands 26:889–916.

    Article  Google Scholar 

  • Bridgham SD, Pastor J, Dewey B, Weltzin JF, Updegraff K. 2008. Rapid carbon response of peatlands to climate change. Ecology 89:3041–3048.

    Article  PubMed  Google Scholar 

  • Burrows SM, Maltrud M, Yang X, Zhu Q, Jeffery N, Shi X, Ricciuto D, Wang S, Bisht G, Tang J, Wolfe J, Harrop BE, Singh B, Brent S, Baldwin S, Zhou T, Cameron-Smith P, Keen N, Collier N, Xu M, Hunke EC, Elliott SM, Turner AK, Li H, Wang H, Golaz J-C, Bond-Lamberty B, Hoffman FM, Riley WJ, Thornton PE, Calvin K, Leung LR. 2020. The DOE E3SM v1.1 Biogeochemistry configuration: Description and simulated ecosystem-climate responses to historical changes in forcing. Journal of Advances in Modeling Earth Systems 12: e2019MS001766.

  • Cleveland CC, Liptzin D. 2007. C:N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–252.

    Article  Google Scholar 

  • Cott GM, Jansen MAK, Megonigal JP. 2020. Uptake of organic nitrogen by coastal wetland plants under elevated CO2. Plant and Soil 450:521–535.

    Article  CAS  Google Scholar 

  • Curtinrich HJ, Sebestyen SD, Griffiths NA, Hall SJ. 2021. Warming stimulates iron-mediated carbon and nutrient cycling in mineral-poor peatlands. Ecosystems.

  • Darrouzet-Nardi A, Bowman WD. 2011. Hot spots of inorganic nitrogen availability in an alpine-subalpine ecosystem, Colorado Front Range. Ecosystems 14:848–863.

    Article  CAS  Google Scholar 

  • Defrenne CE, Childs J, Fernandez CW, Taggart M, Nettles WR, Allen MF, Hanson PJ, Iversen CM. 2021. High-resolution minirhizotrons advance our understanding of root-fungal dynamics in an experimentally warmed peatland. Plants, People, Planet 3:640–652.

    Article  Google Scholar 

  • de Graaff MA, van Groenigen KJ, Six J, Hungate B, van Kessel C. 2006. Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Global Change Biology 12:2077–2091.

    Article  Google Scholar 

  • Eppinga MB, Rietkerk M, Belyea LR, Nilsson MB, De Ruiter PC, Wassen MJ. 2010. Resource contrast in patterned peatlands increases along a climatic gradient. Ecology 91:2344–2355.

    Article  PubMed  Google Scholar 

  • Fenner N, Ostle NJ, McNamara N, Sparks T, Harmens H, Reynolds B, Freeman C. 2007. Elevated CO2 effects on peatland plant community carbon dynamics and DOC production. Ecosystems 10:635–647.

    Article  CAS  Google Scholar 

  • Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iversen CM, Jackson RB, Kubiske ME, Ledford J, Liberloo M, Oren R, Polle A, Pritchard S, Zak DR, Schlesinger WH, Ceulemans R. 2007. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences 104:14014–14019.

    Article  CAS  Google Scholar 

  • Franzén LG. 2006. Increased decomposition of subsurface peat in Swedish raised bogs: Are temperate peatlands still net sinks of carbon? Mires and Peat 1:03.

    Google Scholar 

  • Gerdol R, Petraglia A, Bragazza L, Iacumin P, Brancaleoni L. 2007. Nitrogen deposition interacts with climate in affecting production and decomposition rates in Sphagnum mosses. Global Change Biology 13:1810–1821.

    Article  Google Scholar 

  • Giblin AE, Laundre JA, Nadelhoffer KJ, Shaver GR. 1994. Measuring nutrient availability in arctic soils using ion exchange resins: A field test. Soil Science Society of America Journal 58:1154–1162.

    Article  CAS  Google Scholar 

  • Gorham E. 1991. Northern peatlands: Role in the carbon cycle and probably responses to climatic warming. Ecological Applications 1:182–195.

    Article  PubMed  Google Scholar 

  • Graham JD, Glenn NF, Spaete LP, Hanson PJ. 2020. Characterizing peatland microtopography using gradient and microform-based approaches. Ecosystems 23:1464–1480.

    Article  Google Scholar 

  • Griffiths NA, Sebestyen SD. 2016. Dynamic vertical profiles of peat porewater chemistry in a northern peatland. Wetlands 36:1119–1130.

    Article  Google Scholar 

  • Griffiths NA, Hook LA, Hanson PJ. 2016a. SPRUCE S1 Bog and SPRUCE experiment location survey results, 2015 and 2020. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. https://doi.org/10.3334/CDIAC/spruce.015

  • Griffiths NA, Sebestyen SD, Oleheiser KC, Stelling JM, Pierce CE, Nater EA, Toner BM, Kolka RK. 2016b. SPRUCE Porewater Chemistry Data for Experimental Plots Beginning in 2013, 3rd edition. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. https://doi.org/10.3334/CDIAC/spruce.028

  • Griffiths NA, Hanson PJ, Ricciuto DM, Iversen CM, Jensen AM, Malhotra A, McFarlane KJ, Norby RJ, Sargsyan K, Sebestyen SD, Shi X, Walker AP, Ward EJ, Warren JM, Weston DJ. 2017. Temporal and spatial variation in peatland carbon cycling and implications for interpreting responses of an ecosystem-scale warming experiment. Soil Science Society of America Journal 81:1668–1688.

    Article  CAS  Google Scholar 

  • Griffiths NA, Sebestyen SD, Oleheiser KC. 2019. Variation in peatland porewater chemistry over time and space along a bog to fen gradient. Science of the Total Environment 697:14.

    Article  Google Scholar 

  • Gu Q, Grogan P. 2020. Nutrient availability measurement techniques in arctic tundra soils: in situ ion exchange membranes compared to direct extraction. Plant and Soil 454:359–378.

    Article  CAS  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA. 2000. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 48:115–146.

    Article  CAS  Google Scholar 

  • Hanson PJ, Riggs JS, Nettles WR, Krassovski MB, Hook LA. 2016. SPRUCE whole ecosystems warming (WEW) environmental data beginning August 2015. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. https://doi.org/10.3334/CDIAC/spruce.032

  • Hanson PJ, Riggs JS, Nettles WR, Phillips JR, Krassovski MB, Hook LA, Gu L, Richardson AD, Aubrecht DM, Ricciuto DM, Warren JM, Barbier C. 2017. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere. Biogeosciences 14:861–883.

    Article  CAS  Google Scholar 

  • Hanson PJ, Griffiths NA, Iversen CM, Norby RJ, Sebestyen SD, Phillips JR, Chanton JP, Kolka RK, Malhotra A, Oleheiser KC, Warren JM, Shi X, Yang X, Mao J, Ricciuto DM. 2020a. Rapid net carbon loss from a whole-ecosystem warmed peatland. AGU Advances 1: e2020aAV000163.

  • Hanson PJ, Phillips JR, Nettles WR, Pearson KJ, Hook LA. 2020b. SPRUCE plot-level water table data assessments for absolute elevations and height with respect to mean hollows beginning in 2015. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. https://doi.org/10.25581/spruce.079/1608615

  • Harrison XA, Donaldson L, Correa-Cano ME, Evans J, Fisher DN, Goodwin CED, Robinson BS, Hodgson DJ, Inger R. 2018. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6:e4794.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedwall P-O, Brunet J, Rydin H. 2017. Peatland plant communities under global change: negative feedback loops counteract shifts in species composition. Ecology 98:150–161.

    Article  PubMed  Google Scholar 

  • Herndon EM, Kinsman-Costello L, Duroe KA, Mills J, Kane ES, Sebestyen SD, Thompson AA, Wullschleger SD. 2019. Iron (Oxyhydr)Oxides serve as phosphate traps in tundra and boreal peat soils. Journal of Geophysical Research: Biogeosciences 124:227–246.

    Article  CAS  Google Scholar 

  • Hill BH, Elonen CM, Jicha TM, Kolka RK, Lehto LLP, Sebestyen SD, Seifert-Monson LR. 2014. Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types. Biogeochemistry 120:203–224.

    Article  CAS  Google Scholar 

  • Hoosbeek MR, Van Breemen N, Vasander H, Buttler A, Berendse F. 2002. Potassium limits potential growth of bog vegetation under elevated atmospheric CO2 and N deposition. Global Change Biology 8:1130–1138.

    Article  Google Scholar 

  • IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte V, P Zhai, A Pirani, SL Connors, C Péan, S Berger, N Caud, Y Chen, L Goldfarb, MI Gomis, M Huang, K Leitzell, E Lonnoy, JBR Matthews, TK Maycock, T Waterfield, O Yelekçi, R Yu, B Zhou (eds.)]. Cambridge University Press. In Press.

  • Iversen CM, Bridgham SD, Kellogg LE. 2010. Scaling plant nitrogen use and uptake efficiencies in response to nutrient addition in peatlands. Ecology 91:693–707.

    Article  PubMed  Google Scholar 

  • Iversen CM, Hanson PJ, Brice DJ, Phillips JR, McFarlane KJ, Hobbie EA, Kolka RK. 2014. SPRUCE peat physical and chemical characteristics from experimental plot cores, 2012. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. https://doi.org/10.3334/CDIAC/spruce.005

  • Iversen CM, Latimer J, Burnham A, Brice DJ, Childs J, Vander Stel HM. 2017. SPRUCE Plant-Available Nutrients Assessed with Ion-Exchange Resins in Experimental Plots, Beginning in 2013. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. https://doi.org/10.3334/CDIAC/spruce.036.

  • Iversen CM, Childs J, Norby RJ, Ontl TA, Kolka RK, Brice DJ, McFarlane K, Hanson PJ. 2018. Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat. Plant and Soil 424:123–143.

    Article  CAS  Google Scholar 

  • Juutinen S, Moore TR, Laine AM, Bubier JL, Tuittila E-S, De Young A, Chong M. 2016. Responses of the mosses Sphagnum capillifolium and Polytrichum strictum to nitrogen deposition in a bog: Growth, ground cover, and CO2 exchange. Botany 94:127–138.

    Article  CAS  Google Scholar 

  • Keller JK, Bauers AK, Bridgham SD, Kellogg LE, Iversen CM. 2006. Nutrient control of microbial carbon cycling along an ombrotrophic-minerotrophic peatland gradient. Journal of Geophysical Research: Biogeosciences 111:G3.

    Article  Google Scholar 

  • Keuper F, van Bodegom PM, Dorrepaal E, Weedon JT, van Hal J, van Logtestijn RSP, Aerts R. 2012. A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. Global Change Biology 18:1998–2007.

    Article  Google Scholar 

  • Kielland K. 1994. Amino-acid absorption by arctic plants—Implications for plant nutriention and nitrogen cycling. Ecology 75:2373–2383.

    Article  Google Scholar 

  • Kielland K, McFarland J, Olson K. 2006. Amino acid uptake in deciduous and coniferous taiga ecosystems. Plant and Soil 288:297–307.

    Article  CAS  Google Scholar 

  • Kiheri H, Velmala S, Pennanen T, Timonen S, Sietiö O-M, Fritze H, Heinonsalo J, van Dijk N, Dise N, Larmola T. 2020. Fungal colonization patterns and enzymatic activities of peatland ericaceous plants following long-term nutrient addition. Soil Biology and Biochemistry 147:107833.

    Article  CAS  Google Scholar 

  • Koerselman W, Arthur FMM. 1996. The Vegetation N: P Ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33:1441–1450.

    Article  Google Scholar 

  • Larmola T, Bubier JL, Kobyljanec C, Basiliko N, Juutinen S, Humphreys E, Preston M, Moore TR. 2013. Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Global Change Biology 19:3729–3739.

    Article  PubMed  Google Scholar 

  • Levy P, van Dijk N, Gray A, Sutton M, Jones M, Leeson S, Dise N, Leith I, Sheppard L. 2019. Response of a peat bog vegetation community to long-term experimental addition of nitrogen. Journal of Ecology 107:1167–1186.

    Article  CAS  Google Scholar 

  • Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G. 2008. Peatlands and the carbon cycle: from local processes to global implications – a synthesis. Biogeosciences 5:1475–1491.

    Article  CAS  Google Scholar 

  • Limpens J, Granath G, Gunnarsson U, Aerts R, Bayley S, Bragazza L, Bubier J, Buttler A, van den Ber LJL, Francez A-J, Gerdol R, Grosvernier P, Heijmans MMPD, Hoosbeek MR, Hotes S, Ilomets M, Leith I, Mitchell EAD, Moore T, Nilsson MB, Nordbakken J-F, Rochefort L, Rydin H, Sheppard LJ, Thormann M, Wiedermann MM, Williams BL, Xu B. 2011. Climatic modifiers of the response to N deposition in peat-forming Sphagnum mosses: a meta-analysis. New Phytologist 191:496–507.

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Xu X, Zhou C, Zhao J, Li B, Nie M. 2020. Geographic linkages of root traits to salt marsh productivity. Ecosystems.

  • Lloyd J, Taylor JA. 1994. On the temperature dependence of soil respiration. Functional Ecology 8:315–323.

    Article  Google Scholar 

  • Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS. 2004. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–443.

    Article  CAS  PubMed  Google Scholar 

  • Malhotra A, Moore TR, Limpens J, Roulet NT. 2018. Post-thaw variability in litter decomposition best explained by microtopography at an ice-rich permafrost peatland. Arctic, Antarctic, and Alpine Research 50:e1415622.

    Article  Google Scholar 

  • Malhotra A, Brice DJ, Childs J, Graham JD, Hobbie EA, Vander Stel H, Feron SC, Hanson PJ, Iversen CM. 2020. Peatland warming strongly increases fine-root growth. Proceedings of the National Academy of Sciences 117:17627–17634.

    Article  CAS  Google Scholar 

  • McFarlane KJ, Hanson PJ, Iversen CM, Phillips JR, Brice DJ. 2018. Local spatial heterogeneity of Holocene carbon accumulation throughout the peat profile of an ombrotrophic northern Minnesota bog. Radiocarbon 60:941–962.

    Article  CAS  Google Scholar 

  • McPartland MY, Montgomery RA, Hanson PJ, Phillips JR, Kolka R, Palik B. 2020. Vascular plant species response to warming and elevated carbon dioxide in a boreal peatland. Environmental Research Letters 15:12.

    Article  Google Scholar 

  • Medlyn BE, Zaehle S, De Kauwe MG, Walker AP, Dietze MC, Hanson PJ, Hickler R, Jain AK, Luo Y, Parton W, Prentice IC, Thornton PE, Wang S, Wang Y-P, Weng E, Iversen CM, McCarthy HR, Warren JM, Oren R, Norby RJ. 2015. Using ecosystem experiments to improve vegetation models. Nature Climate Change 5:528–534.

    Article  Google Scholar 

  • Milla R, Cornelissen JHC, van Logtestijn RSP, Toet S, Aerts R. 2006. Vascular plant responses to elevated CO2 in a temperate lowland Sphagnum peatland. Plant Ecology 182:13–24.

    Article  Google Scholar 

  • Mooshammer M, Hofhansl F, Frank AH, Wanek W, Hämmerle I, Leitner S, Schnecker J, Wild B, Watzka M, Keiblinger KM, Zechmeister-Boltenstern S, Richter A. 2017. Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events. Science Advances 3:e1602781.

    Article  PubMed  PubMed Central  Google Scholar 

  • Munir TM, Khadka B, Xu B, Strack M. 2017. Mineral nitrogen and phosphorus pools affected by water table lowering and warming in a boreal forested peatland. Ecohydrology 10:15.

    Article  Google Scholar 

  • Murphy MT, Moore TR. 2010. Linking root production to aboveground plant characteristics and water table in a temperate bog. Plant and Soil 336:219–231.

    Article  CAS  Google Scholar 

  • Nichols JE, Peteet DM. 2019. Rapid expansion of northern peatlands and doubled estimate of carbon storage. Nature Geoscience 12:917–921.

    Article  CAS  Google Scholar 

  • Norby RJ, Childs J. 2018. SPRUCE: Sphagnum productivity and community composition in the SPRUCE experimental Plots. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. https://doi.org/10.25581/spruce.049/1426474

  • Norby RJ, Childs J, Hanson PJ, Warren JM. 2019. Rapid loss of an ecosystem engineer: Sphagnum decline in an experimentally warmed bog. Ecology and Evolution 9:12571–12585.

    Article  PubMed  PubMed Central  Google Scholar 

  • Norby RJ, Childs J, Brice DJ. 2020. SPRUCE: Sphagnum carbon, nitrogen and phosphorus concentrations in the SPRUCE experimental plots. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. https://doi.org/10.25581/spruce.084/1647361

  • Olid C, Nilsson MB, Eriksson T, Klaminder J. 2014. The effects of temperature and nitrogen and sulfur additions on carbon accumulation in a nutrient-poor boreal mire: Decadal effects assessed using 210Pb peat chronologies. Journal of Geophysical Research: Biogeosciences 119:392–403.

    Article  CAS  Google Scholar 

  • Parsekian AD, Slater L, Ntarlagiannis D, Nolan J, Sebesteyen SD, Kolka RK, Hanson PJ. 2012. Uncertainty in peat volume and soil carbon estimated using ground-penetrating radar and probing. Soil Science Society of America Journal 76:1911–1918.

    Article  CAS  Google Scholar 

  • R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Raab TK, Lipson DA, Monson RK. 1999. Soil amino acid utilization among species of the Cyperaceae: Plant and soil processes. Ecology 80:2408–2419.

    Article  Google Scholar 

  • Richardson CJ. 1985. Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science 228:1424–1427.

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil 321:305–339.

    Article  CAS  Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen J, Gurevitch J, GCTE-NEWS. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562.

    Article  CAS  PubMed  Google Scholar 

  • Salazar A, Rousk K, Jónsdóttir IS, Bellenger J-P, Andrésson ÓS. 2020. Faster nitrogen cycling and more fungal and root biomass in cold ecosystems under experimental warming: a meta-analysis. Ecology 101:e02938.

    Article  PubMed  Google Scholar 

  • Salmon VG, Brice DJ, Brigham S, Childs J, Graham JD, Griffiths NA, Hofmockel K, Iversen CM, Jicha TM, Kolka RK, Kostka JE, Malhotra A, Norby RJ, Phillips JR, Ricciuto D, Schadt CW, Sebestyen SD, Shi X, Walker AP, Warren JM, Weston DJ, Yang X, Hanson PJ. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: A benchmark for assessing change. Plant and Soil 466:649–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schimel JP, Bennett J. 2004. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 85:591–602.

    Article  Google Scholar 

  • Seay S. 2018. Peatlands hold carbon even in warming environment. Oak Ridge National Laboratory Review 51:20–23.

    Google Scholar 

  • Sebestyen SD, Griffiths NA. 2016. SPRUCE enclosure corral and sump system: Description, operation, and calibration. Climate Change Science Institute, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. https://doi.org/10.3334/CDIAC/spruce.015

  • Sebestyen SD, Dorrance C, Olson DM, Verry ES, Kolka RK, Elling AE, Kyllander R. 2011. Long-term monitoring sites and trends at the Marcell Experimental Forest. In R. K.Kolka, S. D. Sebestyen, a. E. S. Verry, and K. N. Brooks (Eds.), Peatland Biogeochemistry and Watershed Hydrology at the Marcell Experimental Forest (pp. 15–72). New York, NY: CRC Press, Inc.

  • Shi X, Thornton PE, Ricciuto DM, Hanson PJ, Mao J, Sebestyen SD, Griffiths NA, Bisht G. 2015. Representing northern peatland microtopography and hydrology within the Community Land Model. Biogeosciences 12:6463–6477.

    Article  Google Scholar 

  • Shi X, Ricciuto DM, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, Meng L, Weston D, Griffiths NA. 2021. Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO2. Biogeosciences 18:467–486.

    Article  CAS  Google Scholar 

  • Skogley EO, Dobermann A. 1996. Synthetic ion-exchange resins: Soil and environmental studies. Journal of Environmental Quality 25:13–24.

    Article  CAS  Google Scholar 

  • Spohn M, Kuzyakov Y. 2013. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology and Biochemistry 61:69–75.

    Article  CAS  Google Scholar 

  • Steinweg JM, Kostka JE, Hanson PJ, Schadt CW. 2018. Temperature sensitivity of extracellular enzymes differs with peat depth but not with season in an ombrotrophic bog. Soil Biology and Biochemistry 125:244–250.

    Article  CAS  Google Scholar 

  • Tfaily MM, Cooper WT, Kostka JE, Chanton PR, Schadt CW, Hanson PJ, Iversen CM, Chanton JP. 2014. Organic matter transformation in the peat column at Marcell Experimental Forest: Humification and vertical stratification. Journal of Geophysical Research-Biogeosciences 119:661–675.

    Article  CAS  Google Scholar 

  • Tfaily MM, Wilson RM, Cooper WT, Kostka JE, Hanson P, Chanton JP. 2018. Vertical stratification of peat pore water dissolved organic matter composition in a peat bog in northern Minnesota. Journal of Geophysical Research: Biogeosciences 123:479–494.

    Article  CAS  Google Scholar 

  • Toet S, Cornelissen JHC, Aerts R, van Logtestijn RSP, de Beus M, Stoevelaar R. 2006. Moss responses to elevated CO2 and variation in hydrology in a temperate lowland peatland. Plant Ecology 182:27–40.

    Article  Google Scholar 

  • van der Heijden E, Verbeek SK, Kuiper PJC. 2000. Elevated atmospheric CO2 and increased nitrogen deposition: effects on C and N metabolism and growth of the peat moss Sphagnum recurvum P. Beauv. var. mucronatum (Russ.) Warnst. Global Change Biology 6:201–212.

    Article  Google Scholar 

  • Vitousek PM, Howarth RW. 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13:87–115.

    Article  Google Scholar 

  • Vitt DH, Chee W-L. 1990. The relationships of vegetation to surface water chemistry and peat chemistry in fens of Alberta, Canada. Vegetatio 89:87–106.

    Article  Google Scholar 

  • Walker TW, Syers JK. 1976. The fate of phosphorus during pedogenesis. Geoderma 15:1–19.

    Article  CAS  Google Scholar 

  • Walker AP, De Kauwe MG, Bastos A, Belmecheri S, Georgiou K, Keeling RF, Zuidema PA. 2021. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytologist 229:2413–2445.

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Moore TR. 2014. Carbon, nitrogen, phosphorus, and potassium stoichiometry in an ombrotrophic peatland reflects plant functional type. Ecosystems 17:673–684.

    Article  Google Scholar 

  • Wang J, Shi F, Xu B, Wang Q, Wu Y, Wu N. 2014. Uptake and recovery of soil nitrogen by bryophytes and vascular plants in an alpine meadow. Journal of Mountain Science 11:475–484.

    Article  Google Scholar 

  • Wang M, Moore TR, Talbot J, Riley JL. 2015. The stoichiometry of carbon and nutrients in peat formation. Global Biogeochemical Cycles 29:113–121.

    Article  Google Scholar 

  • Wang M, Talbot J, Moore TR. 2018. Drainage and fertilization effects on nutrient availability in an ombrotrophic peatland. Science of the Total Environment 621:1255–1263.

    Article  CAS  PubMed  Google Scholar 

  • Weedon JT, Kowalchuk GA, Aerts R, van Hal J, van Logtestijn R, Taş N, Röling WFM, van Bodegom PM. 2012. Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure. Global Change Biology 18:138–150.

    Article  Google Scholar 

  • Weltzin JF, Bridgham SD, Pastor J, Chen J, Harth C. 2003. Potential effects of warming and drying on peatland plant community composition. Global Change Biology 9:141–151.

    Article  Google Scholar 

  • Wilson RM, Griffiths NA, Visser A, McFarlane KJ, Sebestyen SD, Oleheiser KC, Bosman S, Hopple AM, Tfaily MM, Kolka RK, Hanson PJ, Kostka JE, Bridgham SD, Keller JK, Chanton JP. 2021a. Radiocarbon analyses quantify peat carbon losses with increasing temperature in a whole ecosystem warming experiment, Journal of Geophysical Research: Biogeosciences 126: e2021aJG006511.

  • Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CA, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, Eder EK, Purvine SO, Kolka RK, Sebestyen SD, Griffiths NA, Schadt CW, Keller JK, Bridgham SD, Chanton JP, Kostka JE. 2021b. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences 118:e2004192118.

    Article  CAS  Google Scholar 

  • Yang JE, Skogley EO, Georgitis SJ, Schaff BE, Ferguson AH. 1991. Phytoavailability soil test: Development and verification of theory. Soil Science Society of America Journal 55:1358–1365.

    Article  Google Scholar 

  • Yang X, Ricciuto DM, Thornton PE, Shi X, Xu M, Hoffman F, Norby RJ. 2019. The effects of phosphorus cycle dynamics on carbon sources and sinks in the Amazon region: A modeling study using ELM v1. Journal of Geophysical Research: Biogeosciences 124:3686–3698.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The SPRUCE experiment is supported by the Biological and Environmental Research program in the United States Department of Energy’s Office of Science. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the United States Department of Energy under contract DE-AC05-00OR22725. We thank Sarah Bellaire, Alana Burnham, Kelsey Carter, Ingrid Slette, and Nathan Stenson for their help in the field or laboratory. We also thank the editorial staff and anonymous reviewers for their helpful feedback. The contributions of SDS and funding for the Marcell Experimental Forest and laboratory analysis by the Forest Service were provided by the Northern Research Station of the United States Department of Agriculture Forest Service.

Funding

United States Department of Energy, Office of Science, Biological and Environmental Research program. This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The publisher acknowledges the US government license to provide public access under the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colleen M. Iversen.

Ethics declarations

Conflicts of interest

The authors declare no competing interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3198 KB)

Supplementary file2 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iversen, C.M., Latimer, J., Brice, D.J. et al. Whole-Ecosystem Warming Increases Plant-Available Nitrogen and Phosphorus in an Ombrotrophic Bog. Ecosystems 26, 86–113 (2023). https://doi.org/10.1007/s10021-022-00744-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-022-00744-x

Keywords

Navigation