Skip to main content
Log in

Development of micromechanical models for granular media

The projection problem

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Micromechanical analysis has the potential to resolve many of the deficiencies of constitutive equations of granular continua by incorporating information obtained from particle-scale measurements. The outstanding problem in applying micromechanics to granular media is the projection scheme to relate continuum variables to particle-scale variables. Within the confines of a projection scheme that assumes affine motion, contact laws based on binary interactions do not fully capture important instabilities. Specifically, these contact laws do not consider mesoscale mechanics related to particle group behaviour such as force chains commonly seen in granular media. The implications of this are discussed in this paper by comparison of two micromechanical constitutive models to particle data observed in computer simulations using the discrete element method (DEM). The first model, in which relative deformations between isolated particle pairs are projected from continuum strain, fails to deliver the observed behaviour. The second model accounts for the contact mechanics at the mesoscale (i.e. particle group behaviour) and, accordingly, involves a nonaffine projection scheme. In contrast with the first, the second model is shown to display strain softening behaviour related to dilatancy and produce realistic shear bands in finite element simulations of a biaxial test. Importantly, the evolution of microscale variables is correctly replicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aifantis E.C. (1984). Remarks on media with microstructure. Int. J. Eng. Sci. 22: 961–968

    Article  MATH  Google Scholar 

  2. Bagi K. (1996). Stress and strain in granular assemblies. Mech. Mater. 22: 165–177

    Article  Google Scholar 

  3. Bathurst R.J., Rothenburg L. (1990). Observations on stress–force–fabric relationships in idealized granular materials. Mech. Mater. 9: 65–80

    Article  Google Scholar 

  4. de Borst R., Mühlhaus H.-B. (1992). Gradient-dependent plasticity: formulation and algorithmic aspects. Int. J. Numer. Methods Eng. 35: 521–539

    Article  MATH  Google Scholar 

  5. de Borst R., Sluys L.J. (1991). Localisation in a Cosserat continuum under static and dynamic loading conditions. Comput. Methods Appl. Mech. Eng. 90: 805–827

    Article  Google Scholar 

  6. Calvetti F., Combe G., Lanier J. (1997). Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path. Mech. Cohesive-Fric. Mater. 2: 121–163

    Article  Google Scholar 

  7. Chang C.S., Liao C.L. (1990). Constitutive relation for a particulate medium with the effect of particle rotation. Int. J. Solids Struct. 26(4): 437–453

    Article  MATH  Google Scholar 

  8. Collins I.F. (2005). The concept of stored plastic work or frozen elastic energy in soil mechanics. Geotechnique 55(5): 373–382

    Article  Google Scholar 

  9. Collins I.F., Houlsby G.T. (1997). Applications of thermomechanical principles to the modeling of geotechnical materials. Proc. Roy. Soc. London A 453: 1975–2001

    Article  MATH  ADS  Google Scholar 

  10. Cook, B.K., Jensen, R.P. (eds.): Discrete Element Methods: Numerical Modeling of Discontinua. ASCE Geotechnical Special Publication No. 117. ASCE, Reston, VA (2002)

  11. Edwards S.F., Grinev D.V. (2003). Statistical mechanics of granular materials: stress propagation and distribution of contact forces. Granular Matter 4: 147–153

    Article  MATH  Google Scholar 

  12. Eringen A.C. (1968). Theory of micropolar elasticity. In: Liebowitz, H. (eds) Fracture—An Advanced Treatise, vol. II, pp 621–693. Academic Press, New York

    Google Scholar 

  13. Gardiner B.S., Tordesillas A. (2003). Micromechanical constitutive modelling of granular media: evolution and loss of contacts in particle clusters. J. Eng. Math. 52(1): 93–106

    Article  MathSciNet  Google Scholar 

  14. Goldenberg C., Goldhirsch I. (2002). Force chains, microelasticity and macroelasticity. Phys. Rev. Lett. 89(8): 084302

    Article  ADS  Google Scholar 

  15. Houlsby G.T., Puzrin A.M. (2000). A thermomechanical framework for constitutive models for rate-independent dissipative materials. Int. J. Plasticity 16: 1017–1047

    Article  MATH  Google Scholar 

  16. Jaeger H.M., Nagel S.R., Behringer R.P. (1996). Granular solids, liquids and gases. Rev. Mod. Phys. 64(4): 1259–1273

    Article  ADS  Google Scholar 

  17. Liao C.-L., Chang T.-P., Young D.-H., Chang C.S. (1997). Stress–strain relation for granular materials based on hypothesis of best fit. Int. J. Solids Struct. 64(31–32): 4087–4100

    Article  Google Scholar 

  18. Majmudar T.S., Behringer R.P. (2005). Contact force measurements and stress-induced anisotropy in granular materials. Nature 435: 1079–1082

    Article  ADS  Google Scholar 

  19. Mindlin R.D. (1965). Second gradient of strain and surface tension in linear elasticity. Int. J. Solids Struct. 1: 417–438

    Article  Google Scholar 

  20. Oda M. (1993). Inherent and induced anisotropy in plasticity theory of granular soils. Mech. Mater. 16: 35–45

    Article  MathSciNet  Google Scholar 

  21. Oda, M., Iwashita, K. (eds.): Mechanics of Granular Materials: An Introduction. A.A. Balkema, Rotterdam (1999)

  22. Oda M., Iwashita K. (2000). Study on couple stress and shear band development in granular media based on numerical simulation analyses. Int. J. Eng. Sci. 38: 1713–1740

    Article  Google Scholar 

  23. Oda M., Kazama H. (1998). Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique 48(4): 465–481

    Google Scholar 

  24. Oda M., Yoshida T. (1999). Recent laboratory study 1: shear band development. In: Oda, M., Iwashita, K. (eds) Mechanics of Granular Materials, pp 299–308. A.A. Balkema, Rotterdam

    Google Scholar 

  25. Peters J.F., Muthuswamy M., Wibowo J., Tordesillas A. (2005). Characterization of force chains in granular material. Phys. Rev. E 72: 041307

    Article  ADS  Google Scholar 

  26. Puzrin A.M., Houlsby G.T. (2001). A thermomechanical framework for rate-independent dissipative materials with internal functions. Int. J. Plasticity 17: 1147–1165

    Article  MATH  Google Scholar 

  27. Radjai F., Wolf D.E., Jean M., Moreau J. (1998). Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80(1): 61–64

    Article  ADS  Google Scholar 

  28. Roscoe K.H., Schofield A.N., Wroth C.P. (1958). On the yielding of soils. Geotechnique 8(1): 25–53

    Google Scholar 

  29. Roscoe, K.H., Burland, J.B.: On the Generalized Stress–Strain Behavior of ‘Wet’ Clay, Engineering Plasticity, pp. 539–609. Cambridge University Press, Cambridge (1968)

  30. Rothenburg L., Bathurst R.J. (1989). Analytical study of induced anisotropy in idealized granular materials. Geotechnique 39(4): 601–614

    Google Scholar 

  31. Tejchman J., Herle I., Wehr J. (1999). FE-studies on the influence of initial void ratio, pressure level and mean grain diameter on shear localization. Int. J. Numer. Anal. Methods Geomech. 23: 2045–2074

    Article  MATH  Google Scholar 

  32. Tordesillas A., Peters J.F., Gardiner B. (2004). Shear band evolution and accumulated microstructural development in Cosserat media. Int. J. Numer. Anal. Methods Geotech. Eng. 29: 981–1010

    Article  Google Scholar 

  33. Tordesillas A., Walsh S.D.C. (2002). Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media. Powder Technol. 124: 106–111

    Article  Google Scholar 

  34. Valanis K.C. (1996). A gradient theory of internal variables. Acta Mech. 116: 1–14

    Article  MATH  MathSciNet  Google Scholar 

  35. Valanis K.C., Peters J.F. (1991). An endochronic plasticity theory with shear-volumetric coupling. Int. J. Numer. Anal. Methods Geomech. 15: 77–102

    Article  MATH  Google Scholar 

  36. Valanis K.C., Peters J.F. (1996). Ill-posedness of the initial and boundary value problems in non-associative plasticity. Acta Mech. 114: 1–25

    Article  MATH  MathSciNet  Google Scholar 

  37. Vardoulakis I., Graf B. (1985). Calibration of constitutive models for granular materials using data from biaxial experiments. Geotechnique 35: 299–317

    Article  Google Scholar 

  38. Tordesillas, A., Walsh, S.D.C.: Analysis of deformation and localization in thermomicromechanical Cosserat models of granular media. In: Garcia-Rojo, H.J., Herrmann, S., McNamara, R. (eds.) Proceedings of the Fifth International Conference on the Micromechanics of Granular Media Powders and Grains 2005. Powders and Grains, vol. 1, pp. 419–424. A.A. Balkema, Rotterdam (2005)

  39. Walsh S.D.C., Tordesillas A. (2004). A thermomechanical approach to the development of micropolar constitutive models of granular media. Acta Mech. 167(3–4): 145–169

    Article  MATH  Google Scholar 

  40. Tordesillas A., Walsh S.D.C., Gardiner B. (2004). Bridging the length scales: Micromechanics of granular media. BIT Numer. Maths. 44: 539–556

    Article  MATH  MathSciNet  Google Scholar 

  41. Tordesillas, A., Walsh, S.D.C., Muthuswamy, M.: Role of mesoscale kinematics and non-affine motion in the transition from particle to bulk mechanical properties. J. Engng. Mech. ASCE (2007) (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoinette Tordesillas.

Additional information

This paper is dedicated to Professor Ching S. Chang on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walsh, S.D.C., Tordesillas, A. & Peters, J.F. Development of micromechanical models for granular media. Granular Matter 9, 337–352 (2007). https://doi.org/10.1007/s10035-007-0043-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-007-0043-5

Keywords

Navigation