Skip to main content
Log in

Percolating contact subnetworks on the edge of isostaticity

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We search for a percolating, strong subnetwork of contacts in a quasi-statically deforming, frictional granular material. Of specific interest in this study is that subnetwork which contributes to the majority of the total deviator stress and is, or is on the edge of being, isostatic. We argue that a subnetwork derived from the minimal spanning trees of a graph—optimized to include as many elastic contacts as possible and which bear normal contact forces above a given threshold delivers such a network. Moreover adding the strong 3-force-cycles to the spanning tree introduces a level of redundancy required to achieve a network that is almost if not isostatic. Results are shown for assemblies of non-uniformly sized circular particles under biaxial compression, in two-dimensions: a discrete element (DEM) simulation of monotonic loading under constant confining pressure, and cyclic loading of photoelastic disks under constant volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tordesillas A., Muthuswamy M.: On the modeling of confined buckling force chains. J. Mech. Phys. Solids 57, 706–727 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Vardoulakis I.: Shear-banding and liquefaction in granular materials on the basis of a Cosserat continuum theory. Ingenieur-Archiv 59, 106–113 (1989)

    Article  Google Scholar 

  3. Drescher A., de Josselin de Jong G.: Photoelastic verification of a mechanical model for the flow of a granular material. J. Mech. Phys. Solids 20, 337–340 (1972)

    Article  ADS  Google Scholar 

  4. Majmudar T.S., Behringer R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005)

    Article  ADS  Google Scholar 

  5. Zhang J., Majmudar T.S., Tordesillas A., Behringer R.P.: Statistical properties of a 2D granular material subjected to cyclic shear. Granul Matter 12, 159–172 (2010)

    Article  Google Scholar 

  6. Tordesillas A., Walker D.M., Lin Q.: Force cycles and force chains. Phys. Rev. E 81, 011302 (2010)

    Article  ADS  Google Scholar 

  7. Tordesillas A., Lin Q., Zhang J., Behringer R.P., Shi J.Y.: Structural stability and jamming of self-organized cluster conformations in dense granular materials. J. Mech. Phys. Solids 59, 265–296 (2011)

    Article  ADS  Google Scholar 

  8. Tordesillas, A., Pucilowski, S., Walker, D.M., Peters, J., Hopkins, M.: A complex network analysis of granular fabric evolution in three-dimensions. Dynamics of Continuous, Discrete and Impulsive Systems-B: Applications & Algorithms, (in press)

  9. Radjai F., Jean M., Moreau J.-J., Roux S.: Force distributions in dense two-dimensional granular systems. Phys. Rev. Lett. 77, 274–277 (1996)

    Article  ADS  Google Scholar 

  10. Thornton C., Antony S.J.: Quasi-static deformation of particulate media. Phil. Trans. R. Soc. Lond. A 356, 2763–2782 (1998)

    Article  ADS  MATH  Google Scholar 

  11. Thornton C.: Numerical simulations of deviatoric shear deformation of granular media. Geotechnique 50, 43–53 (2000)

    Article  Google Scholar 

  12. Antony S.J., Kuhn M.R.: Influence of particle shape on granular contact signatures and shear strength: new insights from simulations. Int. J. Solids Struct. 41, 5863–5870 (2004)

    Article  MATH  Google Scholar 

  13. Thornton C., Zhang L.: On the evolution of stress and microstructure during general 3D deviatoric straining of granular media. Geotechnique 60, 333–341 (2010)

    Article  Google Scholar 

  14. Antony S.J.: Link between single-particle properties and macroscopic properties in particulate assemblies: role of structures within structures. Phil. Trans. R. Soc. A 365, 2879–2891 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  15. Baz̆ant Z.P., Cedolin L.: Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories. Oxford University Press, New York (2003)

    Google Scholar 

  16. Chakraborty, B., Behringer, R.P.: Jamming of granular matter. In: Encyclopedia of Complexity and System Science, 39, 4997–5021. (2009)

  17. van Hecke M.: Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. Phys. Condens. Matter 22, 033101 (2010)

    Article  ADS  Google Scholar 

  18. Liu A.J., Nagel S.R.: The jamming transition and the marginally jammed solid. Annu. Rev. Condens. Matter Phys. 1, 347–369 (2010)

    Article  ADS  Google Scholar 

  19. Moukarzel C.F.: Isostatic phase transition and instability in stiff granular materials. Phys. Rev. Lett. 81, 1634–1637 (1998)

    Article  ADS  Google Scholar 

  20. Ellenbroek W.G., Somfai E., van Hecke M., van Saarloos W.: Critical scaling in linear response of frictionless granular packings near jamming. Phys. Rev. Lett. 97, 258001 (2006)

    Article  ADS  Google Scholar 

  21. Ellenbroek W.G., van Hecke M., van Saarloos W.: Jammed frictionless disks: connecting local and global response. Phys. Rev. E 80, 061307 (2009)

    Article  ADS  Google Scholar 

  22. Wyart M., Silbert L.E., Nagel S.R., Witten T.A.: Effects of compression on the vibrational models of marginally jammed solids. Phys. Rev. E 72, 051306 (2005)

    Article  ADS  Google Scholar 

  23. Liu A.J., Nagel S.R.: Nonlinear dynamics: jamming is not just cool any more. Nature 396, 21–22 (1998)

    Article  ADS  Google Scholar 

  24. Blumenfeld R.: Stresses in isostatic granular systems and emergence of force chains. Phys. Rev. Lett. 93, 108301 (2004)

    Article  ADS  Google Scholar 

  25. Blumenfeld R.: Stresses in two-dimensional isostatic granular systems: exact solutions. New J. Phys. 9, 160 (2007)

    Article  ADS  Google Scholar 

  26. Arevalo, R., Zuriguel, I., Maza, D.: Topology of the force network in the jamming transition of an isotropically compressed granular packing. Phys. Rev. E 81, 041302 (2010)

    Google Scholar 

  27. Kruyt, N.P., Antony, S.J.: Force, relative-displacement, and work networks in granular materials subjected to quasistatic deformation. Phys. Rev. E 75, 051308 (2007)

    Google Scholar 

  28. Walker D.M., Tordesillas A.: Topological evolution in dense granular materials: a complex networks perspective. Int. J. Solids Struct. 47, 624–639 (2010)

    Article  MATH  Google Scholar 

  29. Tordesillas A., Zhang J., Behringer R.P.: Buckling force chains in dense granular assemblies: physical and numerical experiment. Geomech. Geoeng. 4, 3–16 (2009)

    Article  Google Scholar 

  30. Muthuswamy, M., Tordesillas, A.: How do interparticle contact friction, packing density and degree of polydispersity affect force propagation in particulate assemblies? J. Stat. Mech. Theory Exp. P09003 (2006)

  31. Tordesillas A., Muthuswamy M.: A thermomicromechanical approach to multiscale continuum modeling of dense granular materials. Acta Geotechnica 3, 225–240 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoinette Tordesillas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, D.M., Tordesillas, A., Thornton, C. et al. Percolating contact subnetworks on the edge of isostaticity. Granular Matter 13, 233–240 (2011). https://doi.org/10.1007/s10035-011-0250-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-011-0250-y

Keywords

Navigation