Skip to main content
Log in

Experimental study of density segregation at end walls in a horizontal rotating cylinder saturated with fluid: friction to lubrication transition

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

What is the effect of interstitial fluid viscosity on granular density segregation in a horizontal rotating cylinder? We conducted experiments in the rolling regime with equal amounts of equal sized high and low density, nearly spherical granular particles saturated with air, water, and water-glycerin mixtures. We held particle density, rotation rate and characteristic length scale constant to highlight differences due purely to the interstitial fluid. Images of the granular flow at an end wall were used to determine radial and axial density segregation rates and patterns. Over a four decade change in viscosity, segregation rates varied by only a factor of two. However, for ratios of lubrication to frictional stresses above one, segregation rates decreased by about 30%, and we observed several notable phenomena in the segregation pattern formation. These were a creeping mode of radial density segregation, a change in shape of the granular bed to kidney shaped from flat, and for cylinders more than half full the typically reported unsheared central portion of the granular bed (often referred to in the literature as a core region) was disrupted by a wavy instability where the rate of disappearance of the core region decreased as the fill level increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso M., Satoha M., Miyanamia K.: Optimum combination of size ratio, density ratio and concentration to minimize free surface segregation. Powder Technol. 68(2), 145–152 (1991)

    Article  Google Scholar 

  2. Metcalfe G., Shattuck M.: Pattern formation during mixing and segregation of flowing granular materials. Physica A 233, 709–717 (1996)

    Article  ADS  Google Scholar 

  3. Cleary P.W., Metcalfe G., Liffman K.: How well do discrete element granular flow models capture the essentials of mixing processes?. Appl. Math. Model. 22, 995–1008 (1998)

    Article  Google Scholar 

  4. Fiedor S.J., Ottino J.M.: Dynamics of axial segregation and coarsening of dry granular materials and slurries in circular and square tubes. Phys. Rev. Lett. 91(24), 244301 (2003). doi:10.11103/PhysRevLett.91.244301

    Article  ADS  Google Scholar 

  5. Khakhar D.V., Orpe A.V., Hajra S.J.: Segregation of granular material in rotating cylinders. Physica 318, 129–136 (2003)

    Article  Google Scholar 

  6. Jain N., Ottino J.M., Lueptow R.M.: Regimes of segregation and mixing in combined size and density granular systems: an experimental study. Granul. Matter 7, 69–81 (2005). doi:10.1007/s10035-005-0198-x

    Article  Google Scholar 

  7. Jain N., Khakhar D.V., Lueptow R.M., Ottino J.M.: Self-organization in granular slurries. Phys. Rev. Lett. 86(17), 3371–3774 (2001)

    Article  ADS  Google Scholar 

  8. Mikamia T., Kamiyaa H., Horio M.: Numerical simulation of cohesive powder behavior in a fluidized bed. Chem. Eng. Sci. 53(10), 1927–1940 (1998). doi:10.1016/S0009-2509(97)00325-4

    Article  Google Scholar 

  9. Tegzes P., Vicsek T., Schiffer P.: Development of correlations in the dynamics of wet granular avalanches. Phys. Rev. E 67, 051303 (2003). doi:10.1103/PhysRevE.67.051303

    Article  ADS  Google Scholar 

  10. Schiffer P.: Granular physics: a bridge to sandpile stability. Nat. Phys. 1, 21–22 (2005). doi:10.1038/nphys129

    Article  Google Scholar 

  11. Scheel M., Seemann R., Brinkmann M., di Michiel M., Sheppard A., Breidenbach B., Herminghaus S.: Morphological clues to wet granular pile stability. Nat. Mater. 7, 189–193 (2008). doi:10.1038/nmat2117

    Article  ADS  Google Scholar 

  12. Liffman K., Nguyen M., Metcalfe G., Cleary P.: Forces in piles of granular material: an analytic and 3D DEM study. Granul. Matter 3, 165–176 (2001)

    Article  Google Scholar 

  13. Kudrolli A.: Size separation in vibrated granular matter. Rep. Prog. Phys. 67, 209–247 (2004). doi:10.1088/0034-4885/67/3/R01

    Article  ADS  Google Scholar 

  14. Xu, Q., Orpe, A.V., Kudrolli, A.: Lubrication effects on the flow of wet granular materials. Phys. Rev. E 76(3) (2007) doi:10.1103/PhysRevE.76.031302

  15. Li H., McCarthy J.J.: Controlling cohesive particle mixing and segregation. Phys. Rev. Lett. 90(18), 184301 (2003). doi:10.1103/PhysRevLett.90.184301

    Article  ADS  Google Scholar 

  16. Jain N., Ottino J.M., Lueptow R.M.: Effect of interstitial fluid on a granular flowing layer. J. Fluid Mech. 508, 23–44 (2004). doi:10.1017/S0022112004008869

    Article  ADS  MATH  Google Scholar 

  17. Huang N., Ovarlez G., Bertrand F., Rodts S., Coussot P., Bonn D.: Flow of wet granular materials. Phys. Rev. Lett. 94, 028301 (2005)

    Article  ADS  Google Scholar 

  18. Liao C.-C., Hsiau S-S.: Influence of interstitial fluid viscosity on transport phenomenon in sheared granular materials. Chem. Eng. Sci. 64, 2562–2569 (2009). doi:10.1016/j.ces.2009.02.030

    Article  Google Scholar 

  19. Drahun J.A., Bridgwater J.: The mechanisms of free surface segregation. Powder Technol. 36(1), 39–53 (1983)

    Article  Google Scholar 

  20. Fuerstenau, M.C., Han, K.N. (eds.): Principles of Mineral Processing. Society for Mining Metallurgy & Exploration (2003)

  21. Galvin K.P., Walton K., Zhou J.: How to elutriate particles according to their density. Chem. Eng. Sci. 64, 2003–2010 (2009). doi:10.1016/j.ces.2009.01.031

    Article  Google Scholar 

  22. Liffman, K., Metcalfe, G.: Add segregation to kill segregation. Aust. Bulk Handl. Rev., Feb/March, 46–47 (1999)

  23. Metcalfe, G., Liffman, K.: A method and device for separating particulate material. Patent number WO2003011483 (2003)

  24. Hayter, D., Pereira, G., Liffman, K., Aldham, B., Johns, S., Šutalo, I.D., Brooks, G., Cleary, P., Metcalfe, G.: Density segregation of granular material in a rotating cylindrical tumbler. In: Nicolau, D.V., Metcalfe, G. (eds.) Biomedical Applications of Micro- and Nanoengineering IV and Complex Systems. SPIE Conference Proceedings, vol. 7270, p. 727010 (2008). doi:10.1117/12.814431

  25. Coussot P., Ancey C.: Rheophysical classification of concentrated suspensions and granular pastes. Phys. Rev. E 59(4), 4445–4457 (1999)

    Article  ADS  Google Scholar 

  26. Bagnold R.A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. A 225, 49–63 (1954)

    Article  ADS  Google Scholar 

  27. Metcalfe G.: Tracking particles in tumbling containers. In: Fleck, N.A., Cocks , A.C.F. (eds) Mechanics of Granular and Porous Materials, pp. 287–298. Kluwer, Dordrecht (1996)

    Google Scholar 

  28. Metcalfe G., Graham L., Zhou J., Liffman K.: Measurement of particle motions within tumbling granular flows. Chaos 9, 581–593 (1999)

    Article  ADS  MATH  Google Scholar 

  29. Maneval J.E., Hill K.M., Smith B.E., Caprihan A., Fukushima E.: Effects of end wall friction in rotating cylinder granular flow experiments. Granul. Matter 7, 199–202 (2005). doi:10.1007/s10035-005-0211-4

    Article  Google Scholar 

  30. McCarthy J.J., Shinbrot T., Metcalfe G., Wolf J.E., Ottino J.M.: Mixing of granular materials in slowly rotated containers. AIChE J. 42(12), 3351–3363 (1996)

    Article  Google Scholar 

  31. Pereira G.G., Sinnott M.D., Cleary P.W., Liffman K., Metcalfe G., Šutalo I.D.: Insights from simulations into mechanisms for density segregation of granular mixtures in rotating cylinders. Granul. Matter 13, 53–74 (2011)

    Article  Google Scholar 

  32. Boateng A.A., Barr P.V.: Granular flow behaviour in the transverse plane of a partially filled rotating cylinder. J. Fluid Mech. 330, 233–249 (1997)

    Article  ADS  Google Scholar 

  33. Santomaso A., Olivi M., Canu P.: Mechanisms of mixing of granular materials in drum mixers under rolling regime. Chem. Eng. Sci. 59, 3269–3280 (2004). doi:10.1016/j.ces.2004.04.026

    Article  Google Scholar 

  34. Pohlman N.A., Ottino J.M., Lueptow R.M.: End-wall effects in granular tumblers: from quasi-two-dimensional flow to three-dimensional flow. Phys. Rev. E 74, 031305 (2006). doi:10.1103/PhysRevE.74.031305

    Article  ADS  Google Scholar 

  35. Metcalfe G., Tennakoon S.G.K., Kondic L., Schaeffer D.G., Behringer R.P.: Granular friction, Coulomb failure, and the fluid-solid transition for horizontally shaken granular materials. Phys. Rev. E 65, 031302 (2002)

    Article  ADS  Google Scholar 

  36. Socie B.A., Unbanhowar P., Lueptow R.M., Jain N., Ottino J.M.: Creeping motion in granular flow. Phys. Rev. E 71, 031304 (2005). doi:10.1103/PhysrevE.71.031304

    Article  ADS  Google Scholar 

  37. Komatsu T.S., Inagaki S., Nakagawa N., Nasuno S.: Creep motion in a granular pile exhibiting steady surface flow. Phys. Rev. Lett. 86(9), 1757–1760 (2001). doi:10.1103/PhysRevLett.86.1757

    Article  ADS  Google Scholar 

  38. Jaeger H.M., Nagel S.R., Behringer R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996). doi:10.1103/RevModPhys.68.1259

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Metcalfe.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, S., John, S.E., Šutalo, I.D. et al. Experimental study of density segregation at end walls in a horizontal rotating cylinder saturated with fluid: friction to lubrication transition. Granular Matter 14, 319–332 (2012). https://doi.org/10.1007/s10035-012-0335-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-012-0335-2

Keywords

Navigation