Skip to main content
Log in

Isostaticity in Cosserat continuum

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Under conditions of isostaticity in granular media, the contact forces for all particles are statically determinate and forces can be computed without recourse to deformation equations or constitutive relationships. Given that stresses represent spatial averages of inter-particle forces, the stress-equilibrium equations for the isostatic state form a hyperbolic system of partial differential equations that describe the internal stress state using only boundary tractions. In this paper, we consider a Cosserat medium and propose closure relationships in terms of stresses and couple stresses from observations of stress variations in the critical state regime from discrete element simulations and experiments on sand, even though the isostatic condition is only satisfied in an average sense. It is shown that the governing equations are hyperbolic, which can be solved using the method of characteristics. Examples of both analytic and numerical solutions are presented. These examples clearly demonstrate that stress chains (characteristic lines) form oblique angles with the assumed direction of the force chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spencer A.J.M.: Double-shearing theory applied to instability and strain localization in granular materials. J. Eng. Math. 45, 55–74 (2003)

    Article  MATH  Google Scholar 

  2. Blumenfeld R.: Stresses in isostatic granular systems and emergence of force chains. Phys. Rev. Lett. 93, 108301 (2004)

    Article  ADS  Google Scholar 

  3. Blumenfeld R.: Stresses in two-dimensional isostatic granular systems: exact solutions. New J. Phys. 9, 160 (2007)

    Article  ADS  Google Scholar 

  4. Gerritsen M., Kreiss G., Blumenfeld R.: Stress chain solutions in two-dimensional isostatic granular systems: fabric-dependent paths, leakage, and branching. Phys. Rev. Lett. 101, 098001 (2008)

    Article  ADS  Google Scholar 

  5. Gerritsen M., Kreiss G., Blumenfeld R.: Analysis of stresses in two-dimensional isostatic granular systems. Physica A 387, 6263–6276 (2008)

    Article  ADS  Google Scholar 

  6. Blumenfeld R.: Stress transmission and isostatic states of non-rigid particulate systems. Modeling Soft Matter IMA Vol. Math. Its Appl. 141, 235–246 (2005)

    MathSciNet  Google Scholar 

  7. Tordesillas A.: Force chain buckling, unjamming transitions and shear banding in dense granular assemblies. Phil. Mag. 87, 4987–5016 (2007)

    Article  ADS  Google Scholar 

  8. Oda M., Konishi J., Nemat-Nasser S.: Experimental micromechanical evaluation of strength of granular materials: effects of particle rolling. Mech. Mater. 1, 269–283 (1982)

    Article  Google Scholar 

  9. Tordesillas A., Zhang J., Behringer R.P.: Buckling force chains in dense granular assemblies: physical and numerical experiments. Geomech. Geoeng. 4, 3–16 (2009)

    Article  Google Scholar 

  10. Peters J.F., Muthuswamy M., Wibowo J., Tordesillas A.: Characterization of force chains in granular material. Phys. Rev. E 72(4), 041307 (2005)

    Article  ADS  Google Scholar 

  11. Oda M., Nemat-Nasser S., Konishi J.: Stress-induced anisotropy in granular masses. Soils Found. 25(3), 85–97 (1985)

    Article  Google Scholar 

  12. Arthur J.R.F., Rodriguez del C.J.I., Dunstan T., Chua K.S.: Principal stress rotation: a missing parameter. J. Geotech. Eng. Div. 106(4), 419–433 (1980)

    Google Scholar 

  13. Walker D.M., Tordesillas A., Thornton C., Behringer R.P., Zhang J., Peters J.F.: Percolating contact subnetworks on the edge of isostaticity. Granul. Matter 13, 213–240 (2011)

    Article  Google Scholar 

  14. Tordesillas A., O’Sullivan P., Walker D.M., Paramitha S.: Micromechanics of granular materials: evolution of functional connectivity in contact and force chain networks: feature vectors, k-cores and minimal cycles. Comptes Rendus Mécanique 338, 556–569 (2010)

    Article  ADS  Google Scholar 

  15. Tordesillas, A., Pucilowski, S., Walker, D.M., Peters, J., Hopkins, M.: A complex network analysis of granular fabric in three-dimensions. Dyn. Continuous, Discret Impuls. Syst. Ser. B. (in press) (2012)

  16. Tordesillas A., Muthuswamy M.: A thermomicromechanical approach to multiscale continuum modeling of dense granular materials. Acta Geotech. 3, 225–240 (2008)

    Article  Google Scholar 

  17. Oda M., Takemura T., Takahashi M.: Microstructure in shear band observed by microfocus X-ray computed tomography. Geotechnique 54, 539–542 (2004)

    Article  Google Scholar 

  18. Rechenmacher A.L.: Grain-scale processes governing shear band initiation and evolution in sands. J. Mech. Phys. Solids 54, 22–45 (2006)

    Article  ADS  MATH  Google Scholar 

  19. Tordesillas A., Shi J., Tshaikiwsky T.: Stress-dilatancy and force chain evolution. Int. J. Numer. Anal. Meth. Geomech. 35, 264–292 (2011)

    Article  MATH  Google Scholar 

  20. Tordesillas A., Muthuswamy M.: On the modeling of confined buckling of force chains. J. Mech. Phys. Solids 57, 706–727 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoinette Tordesillas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tordesillas, A., Shi, J. & Peters, J.F. Isostaticity in Cosserat continuum. Granular Matter 14, 295–301 (2012). https://doi.org/10.1007/s10035-012-0341-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-012-0341-4

Keywords

Navigation