Skip to main content
Log in

DEM simulations: mixing of dry and wet granular material with different contact angles

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

In solid mixing the raw materials typically differ at least in one material property, such as particle size, solid density and wetting properties, which in turn influence particle mobility. For example, smaller particles can percolate through the voids of larger ones under the influence of strain and gravity. This may produce fine particle accumulation at the bottom of the mixing vessel which results in undesired, inhomogeneous final products. When wet particles with different wetting properties need to be mixed, heteroagglomeration may occur as another segregation mechanism. We present a new capillary bridge force model to study segregation in moist cohesive mixing processes using DEM. New analytical equations of best fit are derived by solving the Young–Laplace equation and performing a regression analysis, in order to investigate discontinuous mixing processes of dry and moist materials with different particle sizes and different contact angles. Compared to a dry mixing process, mixing efficiency is improved by the addition of a small amount of liquid. While percolating segregation is reduced, heteroagglomerates occur in the wet mixing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Johanson, J.R.: Particle segregation... and what to do about it. Chem. Eng. 85(11), 183–188 (1978)

    Google Scholar 

  2. Williams, J.C.: The segregation of particulate materials. A review. Powder Technol. 15(2), 245–251 (1976). https://doi.org/10.1016/0032-5910(76)80053-8

    Article  ADS  Google Scholar 

  3. Bridgwater, J.: Fundamental powder mixing mechanisms. Powder Technol. 15(2), 215–236 (1976)

    Article  Google Scholar 

  4. Marinelli, J., Carson, J.W.: Solve solids flow problems in bins, hoppers, and feeders. Chem. Eng. Prog. 88(5), 22–28 (1992)

    Google Scholar 

  5. Gögelein, C., Brinkmann, M., Schröter, M., Herminghaus, S.: Controlling the formation of capillary bridges in binary liquid mixtures. Langmuir 26(22), 17184–17189 (2010)

    Article  Google Scholar 

  6. Lian, G., Seville, J.: The capillary bridge between two spheres: New closed-form equations in a two century old problem. Adv. Colloid Interface Sci. 227, 53–62 (2016). https://doi.org/10.1016/j.cis.2015.11.003

    Article  Google Scholar 

  7. Johanson, J.R.: Smooth out solids blending problems. Chem. Eng. Prog. 96(4), 21–37 (2000)

    Google Scholar 

  8. Hoffmann, T.: Mischen und Befeuchten von Schuttgutern. Universität-Gesamthochschule-Paderborn (1995)

  9. Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  10. Tsuji, Y., Tanaka, T., Ishida, T.: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71(3), 239–250 (1992). https://doi.org/10.1016/0032-5910(92)88030-L

    Article  Google Scholar 

  11. Mikami, T., Kamiya, H., Horio, M.: Numerical simulation of cohesive powder behavior in a fluidized bed. Chem. Eng. Sci. 53(10), 1927–1940 (1998). https://doi.org/10.1016/S0009-2509(97)00325-4

    Article  Google Scholar 

  12. Remy, B., Khinast, J.G., Glasser, B.J.: Wet granular flows in a bladed mixer: experiments and simulations of monodisperse spheres. AIChE J. 58(11), 3354–3369 (2012)

    Article  Google Scholar 

  13. Soulie, F., Cherblanc, F., El Youssoufi, M.S., Saix, C.: Influence of liquid bridges on the mechanical behaviour of polydisperse granular materials. Int. J. Numer. Anal. Methods Geomech. 30(3), 213–228 (2006)

    Article  MATH  Google Scholar 

  14. Anand, A., Curtis, J.S., Wassgren, C.R., Hancock, B.C., Ketterhagen, W.R.: Segregation of cohesive granular materials during discharge from a rectangular hopper. Granul. Matter 12(2), 193–200 (2010)

    Article  MATH  Google Scholar 

  15. Butt, H.-J., Kappl, M.: Normal capillary forces. Adv. Colloid Interface Sci. 146(1), 48–60 (2009)

    Article  Google Scholar 

  16. Derjaguin, B.: Untersuchungen über die Reibung und Adhäsion, IV. Kolloid-Zeitschrift 69(2), 155–164 (1934). https://doi.org/10.1007/bf01433225

    Article  Google Scholar 

  17. Alchikh-Sulaiman, B., Ein-Mozaffari, F., Lohi, A.: Evaluation of poly-disperse solid particles mixing in a slant cone mixer using discrete element method. Chem. Eng. Res. Des. 96, 196–213 (2015). https://doi.org/10.1016/j.cherd.2015.02.020

    Article  Google Scholar 

  18. Stieß, M., Ripperger, S.: Mechanische Verfahrenstechnik-Partikeltechnologie 1, vol. 1. Springer, Berlin (2009)

    Google Scholar 

  19. Fisher, R.A.: On the capillary forces in an ideal soil; correction of formulae given by W. B. Haines. J. Agric. Sci. 16(03), 492–505 (1926). https://doi.org/10.1017/S0021859600007838

    Article  Google Scholar 

  20. Hotta, K., Takeda, K., Iinoya, K.: The capillary binding force of a liquid bridge. Powder Technol. 10(4–5), 231–242 (1974). https://doi.org/10.1016/0032-5910(74)85047-3

    Article  Google Scholar 

  21. Schubert, H.: Kapillarität in porösen Feststoffsystemen. Springer, Berlin (1982)

    Book  Google Scholar 

  22. Lian, G., Thornton, C., Adams, M.J.: A theoretical study of the liquid bridge forces between two rigid spherical bodies. J. Colloid Interface Sci. 161(1), 138–147 (1993). https://doi.org/10.1006/jcis.1993.1452

    Article  ADS  Google Scholar 

  23. Willett, C.D., Adams, M.J., Johnson, S.A., Seville, J.P.: Capillary bridges between two spherical bodies. Langmuir 16(24), 9396–9405 (2000)

    Article  Google Scholar 

  24. Shi, D., McCarthy, J.J.: Numerical simulation of liquid transfer between particles. Powder Technol. 184(1), 64–75 (2008). https://doi.org/10.1016/j.powtec.2007.08.011

    Article  Google Scholar 

  25. Pitois, O., Moucheront, P., Chateau, X.: Liquid bridge between two moving spheres: an experimental study of viscosity effects. J. Colloid Interface Sci. 231(1), 26–31 (2000)

    Article  ADS  Google Scholar 

  26. McCarthy, J.J.: Micro-modeling of cohesive mixing processes. Powder Technol. 138(1), 63–67 (2003). https://doi.org/10.1016/j.powtec.2003.08.042

    Article  Google Scholar 

  27. Chaudhuri, B., Mehrotra, A., Muzzio, F.J., Tomassone, M.S.: Cohesive effects in powder mixing in a tumbling blender. Powder Technol. 165(2), 105–114 (2006). https://doi.org/10.1016/j.powtec.2006.04.001

    Article  Google Scholar 

  28. Nakamura, H., Fujii, H., Watano, S.: Scale-up of high shear mixer-granulator based on discrete element analysis. Powder Technol. 236, 149–156 (2013). https://doi.org/10.1016/j.powtec.2012.03.009

    Article  Google Scholar 

  29. Mani, R., Kadau, D., Or, D., Herrmann, H.J.: Fluid depletion in shear bands. Phys. Rev. Lett. 109(24), 248001 (2012)

    Article  ADS  Google Scholar 

  30. Mani, R., Kadau, D., Herrmann, H.J.: Liquid migration in sheared unsaturated granular media. Granul. Matter 15(4), 447–454 (2013). https://doi.org/10.1007/s10035-012-0387-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG NI 414/25-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Schmelzle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmelzle, S., Nirschl, H. DEM simulations: mixing of dry and wet granular material with different contact angles. Granular Matter 20, 19 (2018). https://doi.org/10.1007/s10035-018-0792-3

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-018-0792-3

Keywords

Navigation