Skip to main content
Log in

Hydrogeochemistry of the Goulburn Valley region of the Murray Basin, Australia: implications for flow paths and resource vulnerability

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater in the Goulburn region of the Murray Basin (Australia) contains solutes derived mainly from evapotranspiration of rainfall-derived marine aerosols, silicate dissolution, and ion exchange. 14C data indicate that groundwater in the Shepparton Formation recharges vertically across the region, whereas groundwater in the Calivil–Renmark Formation shows a greater component of lateral flow. The overall pattern of geochemical and stable isotope variations implies that long-term vertical groundwater flow into the Calivil–Renmark Formation has occurred over thousands of years. Elevated C, N, and F concentrations, together with variable Cl/Br ratios and δ18O values, suggest that short-term (years to decades) flow of surface water into the Calivil–Renmark Formation also occurs locally. The high degree of vertical flow implies that the high-quality groundwater resources of the Calivil–Renmark Formation are vulnerable to surface contamination. Groundwater in both the Shepparton and Calivil–Renmark Formations yields 14C ages of up to 20 ka that imply that, overall, recharge rates are low and that, consequently, the groundwater resource in both formations could be impacted by over abstraction.

Résumé

Les eaux souterraines de la région de Goulburn dans le bassin de Murray (Australie) contiennent des solutés provenant essentiellement de l’évaporation des pluies, de la dissolution de silicates et d’échanges d’ions. Alors qu’il y a peu de variations spatiales du chimisme des eaux souterraines, les concentrations en sels dissous totaux des eaux souterraines de l’aquifère libre de la formation de Shepparton sont en général plus élevées que celles des eaux souterraines de l’aquifère captif sous-jacent de la formation de Calivil-Renmark. Des données de carbone-14, de tritium et de géochimie indiquent que l’aquifère de la formation de Shepparton est rechargé verticalement dans toute la région, tandis que l’aquifère de la formation de Calivil-Renmark présente une plus forte composante d’écoulement latéral. Toutefois, localement, il se produit une recharge verticale de l’aquifère de la formation de Calivil-Renmark, ce qui indique que cette ressource est vulnérable à la contamination. Les eaux souterraines des formations de Shepparton et de Calivil-Renmark présentent toutes deux des âges carbone-14 de plus de 20 ka, ce qui implique des taux de recharge très faibles et, par conséquent, que leur ressource peut être affectée par des prélèvements excessifs. Les eaux souterraines récentes dans cette région sont caractérisées par un rapport molaire Cl/Br très variable (de 50 à 1200), qui reflète le chimisme de pluies en région semi-aride modifié en conséquence par la dissolution de la halite associée à la salinité due aux terres sèches et à l’irrigation. Les eaux souterraines plus profondes possèdent des rapports Cl/Br plus uniformes (de l’ordre de 500 à 800) et reflètent probablement des eaux de recharge sous des conditions climatiques plus humides que les conditions actuelles.

Resumen

Las aguas subterráneas de la región de Goulburn, en la cuenca del río Murray (Australia), contienen solutos procedentes principalmente de la evaporación de agua de lluvia, disolución de silicatos e intercambio iónico. Aunque la variabilidad espacial de la hidrogeoquímica es reducida, el contenido total de sales disueltas en las aguas subterráneas de la formación no confinada de Shepparton es generalmente mayor que el del acuífero inferior confinado de la Formación Calivil–Renmark. Los datos de 14C, 3H y geoquímica sugieren que la recarga del acuífero de la Formación Shepparton es por infiltración (vertical) en toda la región, mientras que la Formación Calivil–Renmark tiene una mayor proporción de aportes laterales. Sin embargo, a escala local se produce recarga vertical en la Formación Calivil–Renmark, hecho que indica que este recurso es vulnerable a la contaminación. Las aguas subterráneas de ambas formaciones tienen edades de hasta 20.000 años, según datos de 14C, lo que implica que las tasas de recarga son bajas y, en consecuencia, que podría haber impactos asociados a la sobreexplotación del recurso. Las aguas subterráneas recientes de la región se caracterizan por relaciones molares muy variables de Cl/Br (de 50 a 1.200), reflejando la química de una precipitación semiárida que se ve modificada posteriormente por disolución de halita, asociada con terrenos secos y riego con aguas salinas. Las aguas subterráneas más profundas presentan relaciones más uniformes de Cl/Br (entre 500 y 800), y probablemente reflejan que la recarga se produjo en condiciones climáticas más húmedas que las actuales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arad A, Evans R (1987) The hydrogeology, hydrochemistry and environmental isotopes of the Campaspe River aquifer system, north-central Victoria, Australia. J Hydrol 95:63–86

    Article  CAS  Google Scholar 

  • Blackburn G, McLeod S (1983) Salinity of atmospheric precipitation in the Murray Darling Drainage Division, Australia. Aust J Soil Res 21:400–434

    Google Scholar 

  • Brown CM (1989) Structural and stratigraphic framework of groundwater occurrence and surface discharge in the Murray Basin, southeastern Australia. Bur Min Res J Aust Geol Geophys 11:127–146

    Google Scholar 

  • Calf GE, Ife D, Tickell S, Smith LW (1986) Hydrogeology and isotope hydrology of Upper Tertiary and Quaternary aquifers in northern Victoria. Aust J Earth Sci 33:19–26

    Google Scholar 

  • Cartwright I, Weaver TR, Fulton S, Nichol C, Reid M, Cheng X (2004) Hydrogeochemical and isotopic constraints on the origins of dryland salinity, Murray Basin, Victoria, Australia. Appl Geochem (in press)

  • Clarke ID, Fritz P (1997) Environmental Isotopes in Hydrogeology. Lewis, New York, USA, 328 pp

  • Coplen TB (1988) Normalization of oxygen and hydrogen isotope data. Chem Geol 72:293–297

    CAS  Google Scholar 

  • Davis JC (1973) Statistics and data analysis in geology. John Wiley, New York, USA, 550 pp

  • Davis SN, Whittemore DO, Fabryka-Martin J (1998) Uses of chloride/bromide ratios in studies of potable water. Ground Water 36:338–351

    CAS  Google Scholar 

  • Davis SN, Cecil L, Zreda M, Moysey S (2001) Chlorine-36, bromide, and the origin of spring water. Chem Geol 179:3–16

    CAS  Google Scholar 

  • Dimos A, Chaplin H, Potts I, Reid M, Barnwell K (1994) Bendigo Hydrogeological Map (1:250,000 scale). Aust Geol Surv Org, Canberra

  • Dogramaci SS, Herczeg AL (2002) Strontium and carbon isotope constraints on carbonate-solution interactions and inter-aquifer mixing in groundwaters of the semi-arid Murray Basin, Australia. J Hydrol 262:50–67

    Article  CAS  Google Scholar 

  • Edmunds WM (2001) Palaeowaters in European coastal aquifers: the goals and main conclusions of the PALAEAUX project. Geol Soc Lond Spec Publ 189:1–16

    CAS  Google Scholar 

  • Edmunds WM, Carrillo-Rivera C (2002) Geochemical evolution of groundwater beneath Mexico City. J Hydrol 258:1–24

    Article  CAS  Google Scholar 

  • Edmunds WM, Smedley PL (2000) Residence time indicators in groundwater; the East Midlands Triassic sandstone aquifer. Appl Geochem 15:737–752

    Article  CAS  Google Scholar 

  • Edmunds WM, Bath AH, Miles DL (1982) Hydrochemical evolution of the East Midlands Triassic sandstone aquifer, England. Geochim Cosmochim Acta 46:2069–2082

    CAS  Google Scholar 

  • Elliott T, Andrews JN, Edmunds WM (1999) Hydrochemical trends, palaeorecharge and groundwater ages in the fissured Chalk aquifer of the London and Berkshire basins, UK. Appl Geochem 14:333–363

    Article  Google Scholar 

  • Evans WR, Kellett JR (1989) The hydrogeology of the Murray Basin, southeastern Australia. Bur Min Res J Aust Geol Geophys 11:147–166

    Google Scholar 

  • Harle KJ (1997) Late Quaternary vegetation and climate change in southeastern Australia; palynological evidence from marine core. Palaeogeog Palaeoclim Palaeoecol 131:465–483

    Article  Google Scholar 

  • Herczeg A, Edmunds WM (2000) Inorganic ions as tracers. In: Cook P, Herczeg A (eds) Environmental tracers in subsurface hydrology. Kluwer Academic Publishers, Boston, pp 31–77

  • Herczeg A, Torgersen T, Chivas AR, Habermehl MA (1991) Geochemistry of ground waters from the Great Artesian Basin, Australia. J Hydrol 126:225–245

    Article  CAS  Google Scholar 

  • Herczeg AL, Barnes CJ, Macumber PG, Olley JM (1992) A stable isotope investigation of groundwater-surface water interactions at Lake Tyrrell, Victoria. Chem Geol 96:19–32

    CAS  Google Scholar 

  • Herczeg AL, Simpson HJ, Mazor E (1993) Transport of soluble salts in a large semiarid basin; River Murray, Australia. J Hydrol 144:59–84

    Article  CAS  Google Scholar 

  • Ivkovic KM, Watkins KL, Cresswell RG, Bauld J (1998) A Groundwater Quality Assessment of the Upper Shepparton Formation Aquifers: Cobram Region, Victoria. Aust Geol Surv Org. Record 1998/16, Canberra, Australia, 89 pp

    Google Scholar 

  • Kimblin RT (1995) The chemistry and origin of groundwater in Triassic sandstone and Quaternary deposits, northwest England and some UK comparisons. J Hydrol 72:293–311

    Article  Google Scholar 

  • Lawrence CR (1988) Murray Basin. In: Douglas JG, Ferguson JA (eds) Geology of Victoria. Geol Soc Aust (Vic Div), Melbourne, Australia, pp 352–363

  • Macumber PG (1991) Interaction between groundwater and surface water systems in northern Victoria. Victoria Dept Cons Env Melbourne, Australia, 345 pp

  • Macumber PG (1992) Hydrological processes in the Tyrrell Basin, southeastern Australia. Chem Geol 96:1–18

    Article  CAS  Google Scholar 

  • Purtschert R, Beyerle U, Aeschbach-Hertig W, Kipfer R, Loosli H (2001) Palaeowaters from the Glatt Valley, Switzerland. Geol Soc Lond Spec Publ 189:193–212

    Google Scholar 

  • Simpson HJ, Herczeg AL (1994) Delivery of marine chloride in precipitation and removal by rivers in the Murray-Darling Basin, Australia. J Hydrol 154:323–350

    Article  Google Scholar 

  • Tickell SJ (1978) Geology and hydrogeology of the eastern part of the riverine plain in Victoria. Geol Surv Victoria Rep 1977-8, Melbourne, Australia, 73 pp

  • Tickell SJ, Humphries J (1985) Hydrogeological map of Bendigo and part of Deniliquin. Dept Ind Tech Res Victoria, Melbourne, Australia

  • Vaikmae R, Edmunds WM, Manzano M (2001) Weichselian palaeoclimate and palaeoenvironment in Europe: background for palaeogroundwater formation. Geol Soc Lond Spec Publ 189:163–192

    CAS  Google Scholar 

  • Victorian Department of Natural Resources and Environment (2003) Groundwater database: http://www.nre.vic.gov.au/dnre/grndwtr/grdata.htm

  • Vogel JC (1970) Groningen radiocarbon dates IX. Radiocarbon 12:444–471

    Google Scholar 

  • Watkins KL, Ivkovic KM, Bauld J (1999) A groundwater quality assessment of shallow aquifers in the Murray region, NSW. Bureau of Rural Sciences Australian Groundwater Quality Assessment Project Report 7, Canberra, Australia, 104 pp

  • Weaver TR, Bahr JM (1991) Geochemical evolution in the Cambrian–Ordovician sandstone aquifer, eastern Wisconsin; 2, Correlation between flow paths and ground-water chemistry. Ground Water 29:510–515

    CAS  Google Scholar 

  • Weaver TR, Frape SK, Cherry JA (1995) Recent cross-formational fluid flow and mixing in the shallow Michigan Basin. Geol Soc Am Bull 107:697–707

    Article  CAS  Google Scholar 

  • Xia Q, Zhao JX, Collerson KD (2001) Early-mid Holocene climatic variations in Tasmania, Australia; multi-proxy records in a stalagmite from Lynds Cave. Earth Planet Sci Lett 194:177–187

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Ben Petrides (Monash) for the stable isotope and anion analyses, John Tsiros (Monash) for the high-resolution ICP-MS analyses, and Fred Leaney (CSIRO, Adelaide) and Keith Fifield (ANU) for the 14C determinations. Ongoing funding by the Australian Research Council and Monash University is gratefully acknowledged. Two anonymous reviewers and Perry Olcott are thanked for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Cartwright.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cartwright, I., Weaver, T.R. Hydrogeochemistry of the Goulburn Valley region of the Murray Basin, Australia: implications for flow paths and resource vulnerability. Hydrogeol J 13, 752–770 (2005). https://doi.org/10.1007/s10040-003-0318-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-003-0318-9

Keywords

Navigation