Skip to main content
Log in

Distinguishing groundwater flow paths in different fractured-rock aquifers using groundwater chemistry: Dandenong Ranges, southeast Australia

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Major ion geochemistry is used to qualitatively interpret groundwater residence times within an aquifer, and the extent of mixing between aquifers with distinctive mineralogy. In conjunction with hydraulic heads and stable isotope geochemistry, flow paths and inter-aquifer exchange are defined in a fractured-rock aquifer system in the Dandenong Ranges, southeast Australia. Stable isotopes indicate modern seasonal recharge throughout the system. At high elevations in the sub-catchment, which includes both marine Silurian-Devonian sedimentary and Tertiary basalt aquifers, Cl is derived primarily from cyclic salts, and differences in mineralogy result in groundwater from the basalt aquifer having higher TDS contents (123–262 mg/L) and (Ca+Mg)/Na ratios (0.9–1.3) than groundwater from the sedimentary aquifer (TDS: 55–79 mg/L; (Ca+Mg)/Na: 0.1–0.2). At low elevations, in areas of local groundwater discharge, the more regional flow system in the Silurian-Devonian sediments contains additional Cl from water–rock interaction and has distinctly higher TDS contents (517–537 mg/L). Differences in groundwater chemistry between the aquifers and between shallower and deeper flow systems highlights areas of inter-aquifer mixing. This is particularly important for aquifer vulnerability where groundwater quality in the deeper aquifer may be impacted by surface activities.

Résumé

Les ions majeurs sont utilisés pour interpréter quantitativement les temps de résidence des eaux souterraines dans les aquifères, et l’étendue des zones de mélange entre les aquifères de différentes minéralogies. En regard de la répartition des charges hydrauliques et des informations données par les isotopes stables, les écoulements et les échanges inter-aquifères sont définis dans un aquifère fracturé dans le Dandenong Ranges, SE de l’Australie. Les isotopes stables indiquent des recharges modernes et saisonnières à travers le système aquifère. A haute altitude dans le sous-bassin versant, qui inclut des sédiments du Siluro-Dévonien et des basaltes du Tertiaire, le chlore est d’abord dérivé des sels cycliques, et des différences minéralogiques dans les eaux souterraines sont observées selon l’aquifère : basalte tertiaire (TDS: 123–262  mg/L; Ca+Mg/Ca: 0.9 à 1.3) et sédiments primaires (TDS: 55–79 mg/L; Ca+Mg/Ca: 0.1–0.2). Aux basses altitudes, dans les zones locales de décharge des eaux souterraines, les écoulements les plus régionaux possèdent des teneurs plus élevées en Chlore en provenance des interactions eau—roche, et des TDS plus élevées (515–537 mg/L). Des différences dans la chimie des eaux souterraines entre les aquifères et entre les systèmes d’écoulement de surface et les écoulements profonds mettent en lumière les zones de mélange inter-aquifère. Ceci est particulièrement important pour la définition de la vulnérabilité où la qualité des eaux souterraines en profondeur peuvent subir les impacts des activités de surface.

Resumen

Se ha utilizado geoquímica de iones mayores para interpretar cualitativamente los tiempos de residencia del agua subterránea dentro de un acuífero, y el grado de mezcla entre acuíferos con mineralogía característica. De manera conjunta con presiones hidráulicas y geoquímica de isótopos estables, se han definido trayectorias de flujo e intercambio entre acuíferos en un sistema de acuífero de roca fracturada en las Sierras Dandenong, sureste de Australia. Los isótopos estables indican recarga estacional moderada a través del sistema. A elevaciones altas en la sub-cuenca que incluye acuíferos sedimentarios Silúrico-Devónicos y acuíferos basálticos Terciarios, Cl se deriva principalmente de sales cíclicas. Las diferencias en mineralogía resultan en agua subterránea del acuífero basáltico que tiene mayores contenidos TDS (123–262 mg/L) y mayor relación (Ca+Mg)/Na (0.9–1.3) que el agua subterránea de los acuíferos sedimentarios (TDS:55–79 mg/L; (Ca+Mg)/Na: 0.1–0.2). A elevaciones bajas, en áreas de recarga local de agua subterránea, el sistema de flujo más regional en los sedimentos Silúrico-Devónicos contiene Cl adicional que se deriva de la interacción roca-agua y típico contenido TDS más alto (517–537 mg L). Las diferencias en la química del agua subterránea entre los acuíferos y entre los sistemas de flujo más profundo y más somero resalta áreas de mezcla entre acuíferos. Esto es particularmente importante para la vulnerabilidad del acuífero donde la calidad del agua subterránea en el acuífero más profundo puede ser impactada por las actividades superficiales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 a
Fig. 3
Fig. 4 a
Fig. 5
Fig. 6
Fig. 7 a
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bierlein FP, Waldron HM, Arne DC (1999) Behaviour of rare earth elements during hydrothermal alteration of meta-turbidites associated with mesothermal gold mineralization in central Victoria, Australia. J Geochem Explor 67(1–3):109–125

    Google Scholar 

  • Bureau of Meteorology (2000) Average annual rainfall. http://www.bom.gov.au/cgi-bin/climate/cgi_bin_scripts/annual_rnfall.cgi

  • Bureau of Meteorology (2002) Data and further information. http://www.bom.gov.au/climate/how/index.shtml

  • Cecil LD, Green JR (1999) Radon-222. In: Cook P, Herczeg AL (eds) Environmental Tracers in Hydrology. Kluwer, Dordrecht, pp 175–194

  • Cheng X (1998) Evaluation of the impacts of groundwater abstraction on groundwater flow and solute transport in the Western Port Group Aquifer System, Western Port Basin, Victoria. MSc Thesis, University of Melbourne, Australia

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New York

  • Cook PG, Solomon DK (1995) Transport of atmospheric trace gases to the water table: implications for groundwater dating with chlorofluorocarbons and krypton 85. Water Resour Res 31(2):263–270

    CAS  Google Scholar 

  • Cook PG, Love AJ, Dighton JC (1999) Inferring ground water flow in fractured rock from dissolved radon. Ground Water 37(4):606–610

    CAS  Google Scholar 

  • Cook PG, Favreau G, Dighton JC, Tickell S (2003) Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers. J Hydrol 277:74–88

    Article  CAS  Google Scholar 

  • Coplen TB (1988) Normalization of oxygen and hydrogen isotope data. Chem Geol 72:293–297

    CAS  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    CAS  Google Scholar 

  • Cunnold D, Fraser P, Weiss R, Prinn R, Simmonds P, Miller B, Alyea F, Crawford A (1994) Global trends and annual releases of CCl3F and CCl2F2 estimated from ALE/GAGE and other measurements from July 1978 to June 1991. J Geophys Res 99(D1):1107–1126

    Article  CAS  Google Scholar 

  • Cunnold D, Weiss R, Prinn R, Hartley D, Simmonds P, Fraser P, Miller B, Alyea F, Porter L (1997) GAGE/AGAGE measurements indicating reductions in global emissions of CCl3F and CCl2F2 in 1992–1994. J Geophys Res 102:1259–1269

    Article  CAS  Google Scholar 

  • Davis SN, Whittemore DO, Fabryka-Martin J (1998) Uses of chloride/bromide ratios in studies of potable water. Ground Water 36(2):338–350

    CAS  Google Scholar 

  • Davis SN, Cecil LD, Zreda M, Moysey S (2001) Chlorine-36, bromide, and the origin of spring water. Chem Geol 179:3–16

    CAS  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals, 2nd edn. Wiley, New York

  • Department of Natural Resources and Environment (DNRE) Victorian Groundwater database (1999) Groundwater database. http://www.nre.vic.gov.au/dnre/grndwtr/g-rdata.htm

  • Domenico PA, Schwartz FW (1998) Physical and chemical hydrology, 2nd edn, Wiley, New York

  • Doughty C, Karasaki K (2002) Flow and transport in hierarchically fractured rock. J Hydrol 263:1–22

    Article  Google Scholar 

  • Drever JI (1997) The geochemistry of natural waters, surface and groundwater environments, 3rd edn. Prentice-Hall, Englewood Cliffs, NJ

  • Edmunds WM, Smedley PL (2000) Residence time indicators in groundwater: the East Midlands Triassic sandstone aquifer. Applied Geochem 15:737–752

    Article  CAS  Google Scholar 

  • Edmunds WM, Carrillo-Rivera JJ, Cardona A (2002) Geochemical evolution of groundwater beneath Mexico City. J Hydrology 258:1–24

    Article  CAS  Google Scholar 

  • Edwards AB (1956) The rhyolite-dacite-granodiorite association of the Dandenong Ranges. Proc RSoc Victoria 68:111–149

    CAS  Google Scholar 

  • Faust SD, Aly OM (1981) Chemistry of Natural Waters, Ann Arbor, Ann Arbor, MI

  • Folger PF, Poeter E, Wanty RB, Day W, Frishman D (1997) 222Rn transport in a fractured crystalline rock aquifer: results from numerical simulations. J Hydrol 195:45–77

    Article  CAS  Google Scholar 

  • Geoscience Victoria’s borehole database (1999) Data extracts, Minerals Business Centre, Minerals and Petroleum division, Department of Primary Industries. http://www.dpi.vic.gov.au/web/root/domino/cm_da/nrenmp.nsf/frameset/NRE+Minerals+and+Petroleum?OpenDocument

  • Hartley DE, Kindler T, Cunnold DE, Prinn RG (1996) Evaluating chemical transport models: comparison of effects of different CFC-11 emission scenarios. J Geophys Res 101:14381–14385

    Article  CAS  Google Scholar 

  • Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109

    Article  Google Scholar 

  • Herczeg AL (2001) Can major ion chemistry be used to estimate groundwater residence time in basalt aquifers? In: Cidu R (ed) Water–rock interaction, Balkema, Rotterdam, pp 529–532

  • Ho Jeong C (2001) Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. J Hydrol 253:194–210

    Article  CAS  Google Scholar 

  • Huizar AR, Mendez GT, Madrid RR (1998) Patterns of groundwater hydrochemistry in Apan-Tochac sub-basin, Mexico. Hydrol Sci 43(5):669–685

    Google Scholar 

  • IAEA/WMO (1999) Global Network for isotopes in precipitation. The GNIP Database, Release 3, October 1999, Laboratory code: 9486800, http://www.iaea.org/programs/ri/gnip/gnipmain.htm

  • Jankowski J, Shekarforoush S, Acworth RI (1998) Reverse ion-exchange in a deeply weathered porphyritic dacite fractured aquifer system, Yass, New South Wales, Australia. In: Arehart GB, Hulston JR (eds) Water–rock interaction, Balkema, Rotterdam, pp 243–246

  • Langmuir D (1997) Aqueous environmental geochemistry, McConnin RA (ed), Prentice-Hall, Englewood Cliffs, NJ

  • Lee ES, Krothe NC (2001) A four-component mixing model for water in a karst terrain in south-central Indiana, USA. Using solute concentration and stable isotopes as tracers. Chem Geol 179:129–143

    Article  CAS  Google Scholar 

  • Leonard J (1992) Port Phillip region groundwater resources: future use and management. Department of Water Resources, Victoria

    Google Scholar 

  • Marsden MAH (1988) Upper Devonian: Carboniferous. In: Douglas JG, Ferguson JA (eds) Geology of Victoria, Victn. Div. Geol. Soc. Aust., Melbourne, pp 147–194

  • Martin CE, McCulloch MT (1999) Nd-Sr isotopic and trace element geochemistry of river sediments and soils in a fertilized catchment, New South Wales, Australia. Geochim Cosmochim Acta 63(2):287–305

    Article  CAS  Google Scholar 

  • Njitchoua R, Dever L, Fontes JCh, Naah E (1997) Geochemistry, origin and recharge mechanisms of groundwaters from the Garoua Sandstone aquifer, northern Cameroon. J Hydrol 190:123–140

    Article  CAS  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Water-Resources Investigations Report 99–4259, US Geol Surv, Reston, Va.

  • Plummer LN, Busenberg E (1999) Chlorofluorocarbons. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology, Kluwer, Dordrecht, pp 441–478

  • Port Phillip Catchment and Land Protection (1999) Yarra Catchment Action Plan. Port Phillip and Westernport Catchment Management Authority, Frankston, Victoria

  • Price RC, Gray CM, Nicholls IA, Day A (1988) Cainozoic volcanic rocks. In: Douglas JG, Ferguson JA (eds) Geology of Victoria, Victn. Div. Geol. Soc. Aust., Melbourne, pp 439–451

  • Puls RW, Barcelona MJ (1996) Low-flow (minimal drawdown) ground-water sampling procedures. EPA Ground Water Issue EPA/540/S-95/504, US EPA, Washington, DC

  • Sanders RG (1992) Silurian and Lower Devonian. In: Peck WA, Neilson JL, Olds RJ, Seddon KD (eds) Engineering geology of Melbourne. Balkema, Rotterdam, pp 75–94

  • Shapiro AM (2002) Cautions and suggestions for geochemical sampling in fractured rock. Ground Water Monitor Remed 22(3):151

    CAS  Google Scholar 

  • Shugg A (1996) Hydrogeology of the Dandenong Ranges fractured rock aquifers and the comparison with similar aquifers in Victoria. MSc Thesis, Sydney University of Technology, Sydney, Australia

  • Shugg A, O’Rourke M (1995) Groundwater in the Yarra Basin. Technical document, YarraCare, Victoria

  • Stumm W, Morgan JJ (1996) Aquatic Chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley, New York

    Google Scholar 

  • Swanson SK, Bahr JM, Schwar MT, Potter KW (2001) Two-way cluster analysis of geochemical data to constrain spring source waters. Chem Geol 179:73–91

    Article  CAS  Google Scholar 

  • Tweed SO (2003) Groundwater chemistry in the Dandeong Ranges sub-catchment: application to aquifer vulnerability in the greater Yarra catchment, Victoria, Australia. PhD Thesis, University of Melbourne, Melbourne, Australia

  • Uliana MM, Sharp Jr JM (2001) Tracing regional flow paths to major springs in Trans-Pecos Texas using geochemical data and geochemical models. Chem Geol 179:53–72

    Article  CAS  Google Scholar 

  • Vandenberg AHM (1988) Silurian: Middle Devonian. In: Douglas JG, Ferguson JA (eds) Geology of Victoria, Victn. Div. Geol. Soc. Aust., Melbourne, pp 103–146

  • Victorian Resources Online (2003) Groundwater basins map database. http://www.nre.vic.gov.au/web/root/Domino/vro/maps.nsf/pages/Victoria-NaturalResources-Water-Groundwater-grwater-basins?Opendocument

  • Vengosh A, Hendry MJ (2001) Chloride-bromide-delta B-11 systematics of a thick clay-rich aquitard system. Water Resour Rese 37(5):1437–1444

    Article  CAS  Google Scholar 

  • Weaver TR, Frape SK, Cherry JA (1995) Recent cross-formational fluid-flow and mixing in the shallow Michigan basin. Geol Soc Am Bull 107(6):697–707

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Marlen Yanni for stable isotope analysis, Peter Cook and John Dighton for CFC and radon analysis, and Ian Swane for help with fieldwork. DNRE provided access to bores in the Victorian State Observation Bore Network and the ARC funded this research. The authors also wish to thank the reviewers: P. Olcott, A. Bath, G. Darling and an anonymous reviewer, whose comments improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Tweed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tweed, S.O., Weaver, T.R. & Cartwright, I. Distinguishing groundwater flow paths in different fractured-rock aquifers using groundwater chemistry: Dandenong Ranges, southeast Australia. Hydrogeol J 13, 771–786 (2005). https://doi.org/10.1007/s10040-004-0348-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-004-0348-y

Keywords

Navigation