Skip to main content

Advertisement

Log in

The evolution of groundwater in the Tyrrell catchment, south-central Murray Basin, Victoria, Australia

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Tyrell catchment lies on the western margin of the Riverine Province in the south-central Murray Basin, one of Australia’s most important groundwater resources. Groundwater from the shallow, unconfined Pliocene Sands aquifer and the underlying Renmark Group aquifer is saline (total dissolved solids up to 150,000 mg/L) and is Na-Cl-Mg type. There is no systematic change in salinity along hydraulic gradients implying that the aquifers are hydraulically connected and mixing during vertical flow is important. Stable isotopes (18O+2H) and Cl/Br ratios indicate that groundwater is entirely of meteoric origin and salts in this system have largely been derived by evapotranspiration of rainfall with only minor halite dissolution, rock weathering (mainly feldspar dissolution), and ion exchange between Na and Mg on clays. Similarity in chemistry of all groundwater in the catchment implies relative consistency in processes over time, independent of any climatic variation. Groundwater in both the Pliocene Sands and Renmark Group aquifers yield ages of up to 25 ka. The Tyrrell Catchment is arid to semi-arid and has low topography. This has resulted in relatively low recharge rates and hydraulic gradients that have resulted in long groundwater residence times.

Résumé

Le Bassin Versant de Tyrell se situe sur la bordure occidentale de la Province de Riverine, dans la zone centrale sud du Bassin de Murray, l’une des ressources en eau souterraines majeures en Australie. Les eaux souterraines de l’aquifère libre superficiel des Sables Pliocènes et de l’aquifère sous-jacent du Renmark Group sont salées (solides dissous totaux atteignant 150,000 mg/L), et de faciès chloruré sodique et magnésien. La salinité ne varie pas selon les gradients hydrauliques, suggérant que les aquifères sont connectés hydrauliquement et que les mélanges sont importants au cours du trajet vertical. Les isotopes stables (18O et 2H) et les rapports Cl/Br indiquent que l’eau a une origine exclusivement météorique, et que les sels sont essentiellement issus de l’évaporation de l’eau de pluie dans ce système, avec quelques effets mineurs de la dissolution de halite, de l’altération des roches (majoritairement dissolution des feldspaths) et des échanges de bases entre Na et Mg dans les argiles. Les similarités chimiques entre toutes les eaux souterraines du bassin versant impliquent une relative continuité des processus dans le temps, indépendamment de tout changement climatique. Les âges des eaux souterraines des aquifères des Sables Pliocènes et du Renmark Group sont estimés à 25,000 ans au maximum. Le Bassin Versant de Tyrell est aride à semi-aride, avec un relief bas. La recharge est par conséquent lente et les gradients hydrauliques peu marqués, générant des temps de résidence élevés.

Resumen

La subcuenca de Tyrell queda en el margen occidental de la Provincia de Riverine en la Cuenca de Murray sur-central, uno de las fuentes de agua subterránea más importantes de Australia. El agua subterránea del acuífero somero y libre de las Arenas del Plioceno, lo mismo del acuífero subyacente del Grupo Renmark es salina (Los Sólidos disueltos totales alcanzan hasta 150,000 mg/L) y es el tipo de Na-Cl-Mg. No hay ningún cambio sistemático en la salinidad a lo largo de los gradientes hidráulicos, implicando que los acuíferos se conectan hidráulicamente y que la mezcla durante el flujo vertical es importante. Los isótopos estables (18O+2H) y las proporciones de Cl/Br indican que el agua subterránea es completamente de origen meteórico y que las sales en este sistema se han derivado principalmente por evapotranspiración de lluvia, con una disolución menor de halita, meteorización de la roca (principalmente la disolución del feldespato), e intercambio iónico entre Na y Mg en las arcillas. La similitud en la química de toda el agua subterránea en la subcuenca, implica la consistencia relativa de los procesos con el tiempo, independiente de cualquier variación climática. El agua subterránea en los acuíferos de las Arenas del Plioceno y del Grupo Renmark tiene edades hasta 25,000 años. La Subcuenca de Tyrrell es árida a semiárida y tiene topografía baja. Esto ha producido proporciones de recarga y gradientes hidráulicos relativamente bajos, que a su vez han resultado en tiempos de residencia largos del agua subterránea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Acworth I, Jankowski J (1993) Hydrogeochemical zonation of groundwater in the Botany Sands aquifer, Sydney. J Aust Geol Geophys 14:193–199

    Google Scholar 

  • Allison GB, Hughes MW (1983) The use of natural tracers as indicators of soil-water movement in a temperate semi-arid region. J Hydrol 60:157–173

    Article  Google Scholar 

  • Allison GB, Barnes CJ, Hughes MW, Leaney FWJ (1984) Effect of climate and vegetation on oxygen-18 and deuterium profiles in soils. In: Isotope hydrology. IAEA SM270/20, IAEA, Vienna, pp 105–123

  • Allison GB, Cook PG, Barnett SR, Walker GR, Jolly ID, Hughes MW (1990) Land clearance and river salinisation in the western Murray Basin, Australia. J Hydrol 119:1–20

    Article  Google Scholar 

  • Arad A, Evans R (1987) The hydrogeology, hydrochemistry and environmental isotopes of the Campaspe River aquifer system, north-central Victoria, Australia. J Hydrol 95:63–86

    Article  Google Scholar 

  • Blackburn G, McLeod S (1983) Salinity of atmospheric precipitation in the Murray-Darling drainage division, Australia. Aust J Soil Res 21:411–434

    Article  Google Scholar 

  • Bonython CW (1956) The salt of Lake Eyre: its occurrence in Madigan Gulf and its possible origin. Trans R Soc S Aust 79:66–90

    Google Scholar 

  • Bowler J (1990) The Last 500,000 years. In: Mackay N, Eastburn D (eds) The murray. Murray Darling Basin Commission, Canberra, pp 95–109

  • Bowler J, Wasson RJ (1984) Glacial age environments of inland Australia. In: Vogel JC (ed) Late Cainozoic palaeoclimates of the Southern Hemisphere. Balkema, Rotterdam, pp 183–208

  • Brown CM (1989) Structural and stratigraphic framework of groundwater occurrence and surface discharge in the Murray Basin, southeastern Australia. Bur Min Res J Aust Geol Geophys 11:127–146

    Google Scholar 

  • Bureau of Meteorology (2005) Commonwealth of Australia Bureau of Meteorology. http://www.bom.gov.au/. Cited July 2005

  • Calf GE, Ife D, Tickell S, Smith W (1986) Hydrogeology and isotope hydrology of upper tertiary and quaternary aquifers in Northern Victoria. Aust J Ear Sci 33:19–26

    Google Scholar 

  • Cartwright I, Weaver TR (2005) Hydrogeochemistry of the Goulburn Valley region of the Murray Basin, Australia: implications for flow paths and resource vulnerability. Hydrogeol J 13:752–770

    Article  Google Scholar 

  • Cartwright I, Weaver TR, Fulton S, Nichol C, Reid M, Cheng X (2004) Hydrogeochemical and isotopic constraints on the origins of dryland salinity, Murray Basin, Victoria, Australia. Appl Geochem 19:1233–1254

    Google Scholar 

  • Chivas AR, Andrew AS, Lyons WB, Bird MI, Donnelly TH (1991) Isotopic constraints on the origin of salt in Australian playas. 1. Sulphur. Palaeogeog Palaeoclimat Palaeoecol 84:309–331

    Article  Google Scholar 

  • Clarke I, Fritz P (1997) Environmental isotopes in hydrogeology. CRC Press, Boca Raton, FL

    Google Scholar 

  • Cook PG, Walker GR, Jolly ID (1989) Spatial variability of groundwater recharge in a semi-arid region. J Hydrol 111:195–212

    Article  Google Scholar 

  • Coplen TB (1988) Normalisation of oxygen and hydrogen isotopic data. Chem Geol 72:293–297

    Google Scholar 

  • Davis JC (1973) Statistical and data analysis in geology. Wiley, New York, p 550

    Google Scholar 

  • Davis SN, Whittemore DO, Fabryka-Martin J (1998) Uses of chloride/bromide ratios in studies of potable water. Ground Water 36:338–351

    Article  Google Scholar 

  • Dudding M (1993) Rural Water Corporation. St Arnaud hydrogeological map (1:250 000). Australian Geological Survey Organisation, Canberra, Australia

  • Edmunds WM, Smedley PL (2000) Residence time indicators in groundwater: the East Midlands Triassic sandstone aquifer. Appl Geochem 15:737–752

    Article  Google Scholar 

  • Edmunds WM, Bath AH, Miles DK (1982) Hydrochemical evolution of the East Midlands Triassic sandstone aquifer, England. Geochem Cosmochim Acta 46:2069–2082

    Article  Google Scholar 

  • Elliot T, Andrews JN, Edmunds WM (1999) Hydrochemical trends, palaeorecharge and groundwater ages in the fissured Chalk aquifer of the London and Berkshire basins, UK. Appl Geochem 14:333–363

    Article  Google Scholar 

  • Evans R, Kellett RJ (1989) The hydrology of the Murray Basin, southeastern Australia. Bur Min Res J Aust Geol Geophys 11:147–166

    Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. Univ. New South Wales Press, Sydney, p 526

    Google Scholar 

  • Herczeg AL, Edmunds WM (2000) Inorganic ions as tracers. In: Cook P, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston, pp 31–77

    Google Scholar 

  • Herczeg AL, Lyons WB (1991) A chemical model for the evolution of Australian sodium chloride lake brines. Palaeogeog Palaeoclimat Palaeoecol 84:43–53

    Article  Google Scholar 

  • Herczeg AL, Torgersen T, Chivas AR, Habermehl MA (1991) Geochemistry of ground waters from the Great Artesian Basin, Australia. J Hydrol 126:225–245

    Article  Google Scholar 

  • Herczeg A, Barnes CJ, Macumber PG, Olley JM (1992) A stable isotope investigation of groundwater-surface water interactions at Lake Tyrrell, Victoria. Chem Geol 96:19–32

    Article  Google Scholar 

  • Herczeg AL, Simpson HJ, Mazor E (1993) Transport of soluble salts in a large semiarid basin: River Murray, Australia. J Hydrol 144:59–84

    Article  Google Scholar 

  • Herczeg AL, Dogramaci SS, Leaney FWJ (2001) Origin of dissolved salts in a large, semi-arid groundwater system: Murray Basin. Aust Mar Freshw Res 52:41–52

    Article  Google Scholar 

  • Hoefs J (1980) Stable isotope geochemistry. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Jankowski J, Acworth I (1993) The hydrochemistry of groundwater in fractured bedrock aquifers beneath dryland salinity occurrences at Yass, NSW. Austr Geol Surv Org J Aust Geol Geophys 14:279–286

    Google Scholar 

  • Johnson M (1979) The origin of Australia’s salt lakes. NSW Geological Survey Technical Report No. 19, vol 2, NSW Geological Survey, Maitland, pp 221–266

  • Kimblin RT (1995) The chemistry and origin of groundwater in Triassic sandstone and Quaternary deposits, northwest England and some UK comparisons. J Hydrol 72:293–311

    Article  Google Scholar 

  • Lawrence CR (1975) Geology, hydrodynamics and hydrochemistry of the Southern Murray Basin. Memoir 30, Geol. Surv. Victoria

  • Lawrence CR (1988) Murray Basin. In: Douglas JG, Ferguson JA (eds) Geology of Victoria. Geol. Soc. Austr. (Victorian Division), Melbourne, pp 352–363

  • Leaney FW, Allison GB (1986) Carbon-14 and stable isotope data for an area in the Murray Basin: its use in estimating recharge. J Hydrol 88:129–145

    Article  Google Scholar 

  • Love AJ, Herczeg AL, Armstrong D, Stadter F, Mazor E (1993) Groundwater flow regime within the Gambier Embayment of the Otway Basin, Australia: evidence from hydraulics and hydrochemistry. J Hydrol 143:297–338

    Article  Google Scholar 

  • Macumber PG (1978) Hydrological equilibrium in the southern Murray Basin, Victoria. Australian Society of Soil Science, Riverina Branch, pp 67–84

    Google Scholar 

  • Macumber PG (1991) Interaction between groundwater and surface water systems in northern Victoria. Victoria Dept. Cons. Env. Melbourne, p 345

  • Macumber PG (1992) Hydrological processes in the Tyrell Basin, Southeastern Australia. Chem Geol 96:1–18

    Article  Google Scholar 

  • O’Rorke ME (1992) Victorian Rural Water Commission Swan Hill. Hydrogeological Map (1:250 000). Bur Min Res J Aust Geol Geophys Canberra, Australia

  • Petrides B, Cartwright I (2005) The hydrogeology and hydrogeochemistry of the Barwon Downs Graben Aquifer, Southwestern Victoria, Australia. Hydrogeol J (in press)

  • Pratt M (1988) In: Lakey R (ed) Hydrogeological assessment of the Loddon and Avoca plains. Department of Primary Industry, Technology and Resources, Canberra

  • Smith CL (1991) Proposed methods of hydrogeochemical exploration for salt deposits using Cl/Br ratios, Eastern Province, Kingdom of Saudi Arabia. Appl Geochem 6:249–255

    Article  Google Scholar 

  • Stute M, Talma S (1998) Glacial temperatures and moisture transport regimes reconstructed from noble gases and O–18, Stampriet aquifer, Namibia. In: Isotope techniques in studying past and current environmental changes in the hydrosphere and atmosphere, IAEA, Vienna, pp 307–318

  • Tardy Y (1971) Characterisation of the principal weathering types by the geochemistry of waters from some European and African crystalline massifs. Chem Geol 7:253–271

    Article  Google Scholar 

  • Tickell SJ (1978) Geology and hydrogeology of the eastern part of the Riverine Plain in Victoria. Geol Surv Victorian Report 1977-8, Melbourne, p 73

  • Tickell SJ, Humphreys J (1986) Groundwater resources and associated salinity problems of the Victorian part of the Riverine Plain. Geol Surv Victoria Report 84, Melbourne, p 104

  • Vogel JC (1970) Groningen radiocarbon dates 4. Radiocarbon 12:444–471

    Google Scholar 

  • Wallick EI (1981) Chemical evolution of groundwater in a drainage basin of Holocene age, east-central Alberta, Canada. J Hydrol 54:245–283

    Article  Google Scholar 

  • Wasson RJ, Donnelly TM (1991) Palaeoclimate reconstruction for the last 300,000 years in Australia. A contribution to prediction of future climate. Technical Memorandum No. 91/3, CSIRO Division of Water Resources, Floreat Park, Western Australia

  • Watkins KL, Ivkovic KM, Bauld J (1999) A groundwater quality assessment of shallow aquifers in the Murray Region, NSW. Bureau of Rural Sciences, Canberra, p 104

    Google Scholar 

  • Weaver TR, Bahr JM (1991) Geochemical evolution in the Cambrian-Ordovician sandstone aquifer, eastern Wisconsin: correlation between flow paths and groundwater chemistry. Ground Water 29:510–515

    Article  Google Scholar 

  • Weaver TR, Frape SK, Cherry JA (1995) Recent cross-formational fluid flow and mixing in the shallow Michigan Basin. Geol Soc Am Bull 107:697–707

    Article  Google Scholar 

  • Wopfner H, Twidale CR (1967) The chemical characteristics of lentic surface waters in Australia. In: Weatherby AH (ed) Australian inland waters and their fauna: eleven studies, Australian National University Press, Canberra

Download references

Acknowledgements

The authors wish to thank the Department of Primary Industries for access and availability to the observation bores. We thank Sinclair Knight Merz for information and data provided on the region and the Pickles family for access to bores on their property. We also thank Andy Christie (ANU) for the cation analyses and Fred Leaney (CSIRO) for 14C analyses. This project would not be possible without the funding from the Australian Research Council and Monash University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Petrides.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrides, B., Cartwright, I. & Weaver, T.R. The evolution of groundwater in the Tyrrell catchment, south-central Murray Basin, Victoria, Australia. Hydrogeol J 14, 1522–1543 (2006). https://doi.org/10.1007/s10040-006-0057-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-006-0057-9

Keywords

Navigation