Skip to main content

Advertisement

Log in

Top-down groundwater hydrograph time-series modeling for climate-pumping decomposition

Modélisation descendante de séries temporelles de piézométrie pour la décomposition climat-pompages

Modelado de arriba a abajo de series de tiempo de hidrogramas de agua subterránea para la descomposición de causas climáticas y de bombeo

气候-抽水作用自上而下的地下水水文曲线时序模拟

Modelação descendente de séries temporais de níveis piezométricos para decomposição clima-bombeamento

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater time-series modeling has emerged as an efficient approach for simulating the impacts of multiple drivers of groundwater-head variation such as rainfall, evaporation and groundwater pumping. However, a bottom-up approach has generally been adopted whereby the input drivers have been assumed without statistical evidence for their inclusion. In this study, a parsimonious time-series model was adopted which accounts for various drivers and is able to simulate the overall groundwater-head variation. It can also separate the effects of pumping and climate drivers on multi-annual time series of groundwater-level variation. The time-series model consists of a soil-moisture layer to account for non-linearity between rainfall and recharge, as well as different pumping response functions to account for pumping from a single well, lake-induced recharge and the effects of multiple pumping bores. The method was applied to a groundwater-pumping region in south-eastern Australia. The results showed that the model is able to separate the effects of pumping from the effects of climate on groundwater-head variation. However, improved estimation of those influences requires a flexible model structure that can account for spatially varying physical processes within the study region such as the relative influence of single or multiple pumping bores and induced recharge from surface-water bodies.

Résumé

La modélisation des séries temporelles de piézométrie a émergé en tant qu’approche efficace pour simuler les impacts de multiples causes de variation de la piézométrie des eaux souterraines, telles que la pluie, l’évaporation et les pompages d’eau souterraine. Cependant, une approche ascendante a généralement été adoptée en vertu de laquelle les causes d’entrée ont été supposées sans preuve statistique pour leur implication. Dans cette étude, un modèle parcimonieux de séries chronologiques a été adopté prenant en considération différentes causes et étant capable de simuler la variation piézométrique dans sa globalité. Il peut aussi séparer les effets des pompages des causes climatiques pour des séries chronologiques pluriannuelles de variation du niveau piézométrique. Le modèle de séries chronologiques consiste en une couche sol-humidité afin d’intégrer la non linéarité entre la pluie et la recharge, ainsi que différentes fonctions de réponse aux pompages pour prendre en compte le pompage dans un puits unique, la recharge induite par un lac et les effets de multiples forages d’exploitation. La méthode a été appliquée à une région d’exploitation des eaux souterraines du Sud-Est de l’Australie. Les résultats montrent que le modèle est capable de séparer les effets des pompages des effets du climat sur les variations du niveau piézométrique. Cependant, l’amélioration de l’estimation de ces influences requiert une structure de modèle flexible qui peut prendre en considération des processus physiques variant spatialement dans la région d’étude, telles que l’influence relative d’un unique ou de multiples forages d’exploitation et la recharge induite par des cours d’eau ou plans d’eau de surface.

Resumen

El modelado de series de tiempo de agua subterránea se ha convertido en un enfoque eficiente para la simulación de los impactos de las múltiples causas de la variación de la carga hidráulica del agua subterránea, tales como precipitación, evaporación y bombeo de agua subterránea. Sin embargo, por lo general se ha adoptado un enfoque “de abajo a arriba” por el cual las causas de ingreso se han asumido sin evidencias estadísticas para su inclusión. En este estudio, se adoptó un modelado de series de tiempo parsimoniosas que representa a varias causas y es capaz de simular la variación global de la carga hidráulica del agua subterránea. También puede separar los efectos del bombeo y las causas climáticas en series de tiempo multianuales de variación de los niveles de agua subterránea. El modelo de series de tiempo consiste de una capa de humedad del suelo para tener cuenta la no linealidad entre la precipitación y la recarga, así como diferentes funciones de respuesta al bombeo para dar cuenta del bombeo desde un pozo único, recarga inducida por un lago y los efectos de múltiples pozos de bombeo. Se aplicó el método a una región de bombeo de agua subterránea en el sudeste de Australia. Los resultados mostraron que el modelo es capaz de separar los efectos del bombeo de los efectos de las variaciones climáticas sobre la variación de la carga hidráulica del agua subterránea. Sin embargo, una mejor estimación de esas influencias requiere una estructura de modelo flexible que puede dar cuenta de procesos físicos espacialmente variables dentro de la región de estudio, tal como la influencia relativa de simples o múltiples pozos de bombeo y recarga inducida desde cuerpos de agua superficial.

摘要

作为模拟地下水头变化的多重驱动因素影响一个有效的方法,地下水时序模拟应运而生,这些因素包括降雨、蒸发及地下水的抽取。然而,一种自下而上的方法普遍被采用,在这种方法中,假定输入驱动因素无其入选统计论据。在本研究中,采用了一种特别简单的时序模型,这个模型解释了各种驱动因素,能够模拟全部的地下水头变化。模型还可以区分抽水因素和气候因素对地下水位变化多个年度时序的影响。时序模型由一个解释降雨和补给之间的非线性误差的土壤水分层以及解释单井中抽水、湖泊诱发的补给及多个抽水井影响的不同抽水响应函数组成。此方法应用于澳大利亚东南部的地下水抽水区。结果显示,模型能够区分抽水和气候对地下水头变化的影响。然而,提高这些影响的估测水平需要一个切实可行的模型结构,这个模型结构要能够解释研究区内空间上变化的物理过程,诸如单个或多个钻井的相对影响及地表水体诱发的补给。

Resumo

A modelação de séries temporais de níveis piezométricos surgiu como uma abordagem eficiente para simular os impactes de múltiplos controladores da variação do potencial hidráulico, tais como a precipitação, a evaporação e o bombeamento da água subterrânea. No entanto, tem sido geralmente adotada uma abordagem ascendente, pela qual os controladores de entrada são assumidos sem evidência estatística da sua inclusão. Neste estudo, foi adotado um modelo parcimonioso de séries temporais que responde por vários controladores e é capaz de simular a variação global do potencial hidráulico. Também pode separar os efeitos de controladores de bombeamento e de clima em séries temporais multianuais de variação do nível piezométrico. O modelo de séries temporais é composto por uma camada de humidade do solo para explicar a não linearidade entre a precipitação e a recarga, assim como diferentes funções de resposta ao bombeamento num único furo, recarga induzida a partir de um lago e o efeito de vários furos de bombeamento. O método foi aplicado numa região de extração de água subterrânea no sudeste da Austrália. Os resultados mostraram que o modelo é capaz de separar os efeitos do bombeamento dos efeitos do clima na variação do potencial hidráulico. No entanto, a melhoria da estimativa dessas influências requer uma estrutura de modelo flexível que possa responder pela variação espacial dos processos físicos dentro da região de estudo, tais como a influência relativa de furos de bombeamento singulares ou múltiplos e a recarga induzida a partir de corpos de água superficiais.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Atkinson SE, Woods RA, Sivapalan M (2002) Climate and landscape controls on water balance model complexity over changing timescales. Water Resour Res 38:1314. doi:10.1029/2002WR001487

    Article  Google Scholar 

  • Bierkens MFP, Knotters M, van Geer FC (1999) Calibration of transfer function-noise models to sparsely or irregularly observed time series. Water Resour Res 35:1741–1750

    Article  Google Scholar 

  • Box GEP, Jenkins GM (1970) Time series analysis: forecasting and control. Holden-Day, San Francisco

    Google Scholar 

  • Bruggeman GA (1999) Analytical solutions of geohydrological problems. Elsevier, Amsterdam

    Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33:261–314

    Article  Google Scholar 

  • Driscoll FG (1986) Groundwater and wells. Johnson Filtration Systems, St. Paul, MN

    Google Scholar 

  • Fan J, Pan J (2006) Convergence properties of a self-adaptive Levenberg-Marquardt algorithm under local error bound condition. Comput Optim Appl 34:47–62

    Article  Google Scholar 

  • Farmer D, Sivapalan M, Jothityangkoon C (2003) Climate, soil, and vegetation controls upon the variability of water balance in temperate and semiarid landscapes: downward approach to water balance analysis. Water Resour Res 39:1035. doi:10.1029/2001WR000328

    Article  Google Scholar 

  • Ferris JG (1959) Ground water. In: Wisler CO, Brater EF (eds) Hydrology. Wiley, New York

    Google Scholar 

  • Gallardo AH (2013) Groundwater levels under climate change in the Gnangara system, Western Australia. J Water Clim Chang 4:52–62

    Article  Google Scholar 

  • Harp D, Vesselinov V (2011) Identification of pumping influences in long-term water level fluctuations. Groundwater 49:403–414. doi:10.1111/j.1745-6584.2010.00725.x

    Article  Google Scholar 

  • Hocking JB (1976) Gippsland Basin. In: Douglas JA, Ferguson JA (eds) Geology of Victoria. Geological Society of Australia, Sydney

    Google Scholar 

  • Jacob CE (1944) Notes on determining permeability by pumping tests under water-table conditions. US Geological Survey, Reston, VA

    Google Scholar 

  • Jenkin JJ (1966) The geomorphology and upper Cainozoic geology of south-east Gippsland. PhD Thesis, University of Melbourne, Australia

  • Jothityangkoon C, Sivapalan M, Farmer D (2001) Process controls of water balance variability in a large semi-arid catchment: downward approach to hydrological modeling. J Hydrol 254:174–198

    Article  Google Scholar 

  • Khan S, Ahmad A, Wang B (2007) Quantifying rainfall and flooding impacts on groundwater levels in irrigation areas: GIS approach. J Irrig Drain Eng 133:359–367. doi:10.1061/(asce)0733-9437

    Article  Google Scholar 

  • Klemes V (1983) Conceptualization and scale in hydrology. J Hydrol 65:1–23

    Article  Google Scholar 

  • Konikow LF, Kendy E (2005) Groundwater depletion: a global problem. Hydrogeol J 13:317–320. doi:10.1007/s10040-004-0411-8

    Article  Google Scholar 

  • Kruseman GP, De Ridder NA (1994) Analysis and evaluation of pumping test data. International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands

    Google Scholar 

  • Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2:164–168

    Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

  • McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model. US Geol Surv Tech Water Resour Invest, book 6, chap A1. US Geological Survey, Denver, CO

    Google Scholar 

  • McWhorter DB, Sunada DK (1977) Groundwater hydrology and hydraulics. Water Resources, Littleton, CO

    Google Scholar 

  • Morton FI (1983) Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. J Hydrol 66:1–76

    Article  Google Scholar 

  • Nahm Y (1977) Groundwater resources in Gippsland. Geological Survey of Victoria, Melbourne

    Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part I: a discussion of principles. J Hydrol 10:282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Obergfell C, Bakker M, Zaadnoordijk WJ, Maas K (2013) Deriving hydrogeological parameters through time series analysis of groundwater head fluctuations around well fields. Hydrogeol J 21:987–999

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci Discuss 4:439–473

    Article  Google Scholar 

  • Peterson TJ, Western AW (2014) Nonlinear time series modeling of unconfined groundwater head. Water Resour Res 50:8330–8355. doi:10.1002/2013WR014800

    Article  Google Scholar 

  • Shapoori V, Peterson TJ, Western AW, Costelloe JF (2011) Quantifying the impact of pumping on groundwater heads using observation data and advanced time series analysis. Paper presented at the International Congress on Modelling and Simulation, Perth, Australia, Dec 2011, pp 12–16

    Google Scholar 

  • Siriwardena L, Peterson TJ, Western AW (2011) A state-wide assessment of optimal groundwater hydrograph time series models. Paper presented at the International Congress on Modeling and Simulation, Perth, Australia, Dec 2011, pp 12–16

    Google Scholar 

  • Sivapalan M, Young PC (2005) Downward approach to hydrological model development. Encycl Hydrol Sci 3:2081–2098

    Google Scholar 

  • Sivapalan M, Bloschl G, Zhang L, Vertessy R (2003) Downward approach to hydrological prediction. Hydrol Process 17:2101–2111

    Article  Google Scholar 

  • Smith TJ, Marshall LA (2008) Bayesian methods in hydrologic modeling: a study of recent advancements in Markov chain Monte Carlo techniques. Water Resour Res 44:W00B05. doi:10.1029/2007WR006705

    Google Scholar 

  • Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67

    Article  Google Scholar 

  • Sophocleous M (2003) Environmental implications of intensive groundwater use with special regard to streams and wetlands, chap 4. In: Intensive use of groundwater. Balkema, Lisse, The Netherlands

  • Tu W, Mayne R (2002) Studies of multi-start clustering for global optimization. Int J Numer Methods Eng 53:2239–2252

    Article  Google Scholar 

  • Tularam GA, Krishna M (2009) Long-term consequences of groundwater pumping in Australia a review of impacts around the globe. J Appl Sci Environ Sanit 4:151–166

    Google Scholar 

  • Von Asmuth JR, Bierkens MFP, Maas K (2002) Transfer function-noise modeling in continuous time using predefined impulse response functions. Water Resour Res 38:23. doi:10.1029/2001 WR001136

    Google Scholar 

  • Von Asmuth JR, Maas K, Bakker M, Petersen J (2008) Modeling time series of ground water head fluctuations subjected to multiple stresses. Ground Water 46:30–40. doi:10.1111/j.1745-6584.2007.00382.x

    Google Scholar 

  • Vrugt JA, Braak CFJ, Clark MP, Hyman JM, Robinson BA (2008) Treatment of input uncertainty in hydrologic modeling: doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour Res 44:W00B09. doi:10.1029/2007WR006720

    Article  Google Scholar 

  • Vrugt JA, Ter Braak CJF, Diks CGH, Robinson BA, Hyman JM, Higdon D (2009) Accelerating Markov Chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int J Nonlinear Sci Numer Simul 10:273–290

    Article  Google Scholar 

  • Yi MJ, Lee KK (2004) Transfer function-noise modeling of irregularly observed groundwater heads using precipitation data. J Hydrol 288:272–287. doi:10.1016/j.jhydrol.2003.10.020

    Article  Google Scholar 

  • Yihdego Y, Webb JA (2011) Modeling of bore hydrographs to determine the impact of climate and land-use change in a temperate subhumid region of southeastern Australia. Hydrogeol J 19:877–887. doi:10.1007/s10040-011-0726-1

    Article  Google Scholar 

  • Zektser S, Loaiciga HA, Wolf JT (2005) Environmental impacts of groundwater overdraft: selected case studies in the southwestern United States. Environ Geol 47:396–404. doi:10.1007/s00254-004-1164-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support received from the Australian Research Council (grant number: LP0991280), the Department of Sustainability and Environment, Victoria, Australia; the Department of Primary Industries, Victoria, Australia; and the Bureau of Meteorology, Australia. The authors also thank Mr. Andrew Harrison and Mr. Terry Flynn for providing the pumping data and information on the study area and the anonymous reviewers for their valuable comments

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Shapoori.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapoori, V., Peterson, T.J., Western, A.W. et al. Top-down groundwater hydrograph time-series modeling for climate-pumping decomposition. Hydrogeol J 23, 819–836 (2015). https://doi.org/10.1007/s10040-014-1223-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1223-0

Keywords

Navigation