Skip to main content
Log in

Apparent flow-dimension approach to the study of heterogeneous fracture network systems

Approche de la dimension d’écoulement apparente pour l’étude des systèmes de réseaux de fractures hétérogènes

Método basado en la dimensión del flujo aparente para el estudio de sistemas de redes de fracturas heterogéneas

研究非均质裂隙网络系统的表观流尺度方法

Abordagem da dimensão de escoamento aparente para o estudo do sistemas de rede de fraturas heterogêneas

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The generalized radial flow (GRF) model in well-test analysis employs noninteger flow dimensions to represent the variation in flow area with respect to radial distance from a borehole. However, the flow dimension is influenced not only by changes in flow area, but also by permeability variations in the flow medium. In this report, the flow dimension from the combined effect of flow dimensionality and permeability/conductance variation is interpreted and referred to as apparent flow dimension (AFD). AFD is determined using the second derivative of the drawdown-time plot from pressure transient testing, which may have varied noninteger values with time. A systematic set of investigations is presented, starting from idealized channel networks in one, two and three dimensions (1D, 2D and 3D, respectively), and proceeding to a case study with a complex fracture network based on actual field data. Interestingly, a general relation between the AFD upsurge/dip and the conductance contrast between adjacent flow channels is established. The relation is derived from calculations for 1D networks but is shown to be useful even for data interpretation for more complex 2D and 3D cases. In an application to fracture network data at a real site, the presence of flow channel clusters is identified using the AFD plot. Overall, the AFD analysis is shown to be a useful tool in detecting the conductance/dimensionality changes in the flow system, and may serve as one of the different data types that can be jointly analysed for characterizing a heterogeneous flow system.

Résumé

Le modèle d’écoulement radial généralisé (GRF) pour l’analyse des essais de puits utilise des dimensions d’écoulement non entières pour représenter la variation de la zone d’écoulement par rapport à la distance radiale d’un forage. Cependant, la dimension de l’écoulement est influencée non seulement par les changements de la surface d’écoulement, mais aussi par les variations de perméabilité du milieu d’écoulement. Dans cet article, la dimension de l’écoulement résultant de l’effet combiné de la dimension de l’écoulement et de la variation de la perméabilité/conductance est interprétée et désignée sous le nom de dimension apparente de l’écoulement (AFD). L’AFD est déterminée à l’aide de la dérivée seconde du tracé de l’abaissement du niveau d’eau en fonction du temps provenant d’essais transitoires de pression, qui peut avoir des valeurs non entières avec le temps. Un ensemble systématique d’investigations est présenté, en partant de réseaux de canaux idéalisés en une, deux et trois dimensions (1D, 2D et 3D, respectivement), et en procédant à une étude de cas avec un réseau de fractures complexe basé sur des données de terrain réelles. Il est intéressant de noter qu’une relation générale entre la montée/descente de l’AFD et le contraste de conductance entre les canaux d’écoulement adjacents est établie. Cette relation est dérivée de calculs pour des réseaux 1D mais s’avère utile même pour l’interprétation des données dans des cas plus complexes en 2D et 3D. Dans le cas d’une application à des données d’un réseau de fractures sur un site réel, la présence de groupes de canaux d’écoulement est identifiée à l’aide du graphique de l’AFD. Dans l’ensemble, l’analyse AFD s’avère être un outil utile pour détecter les changements de conductance/dimensionnalité dans le système d’écoulement, et peut servir comme l’un des différents types de données qui peuvent être analysés conjointement pour caractériser un système d’écoulement hétérogène.

Resumen

El modelo de flujo radial generalizado (GRF) en el análisis de ensayos de pozos emplea dimensiones de flujo distintas de números enteros para representar la variación del área de flujo con respecto a la distancia radial desde un pozo. Sin embargo, la dimensión del flujo se ve influida no sólo por los cambios en el área de flujo, sino también por las variaciones de permeabilidad en el medio de flujo. En este artículo, la dimensión del flujo derivada del efecto combinado de la dimensionalidad del flujo y la variación de la permeabilidad/conductividad se interpreta y denomina dimensión de flujo aparente (AFD). La AFD se determina utilizando la segunda derivada del gráfico de descenso-tiempo de los ensayos de presión transitoria, que puede haber variado en valores no enteros con el tiempo. Se presenta un conjunto sistemático de investigaciones, partiendo de redes de conductos idealizadas en una, dos y tres dimensiones (1D, 2D y 3D, respectivamente), hasta llegar a un estudio de caso con una red de fracturas compleja basado en datos de campo reales. Se establece una relación general entre el aumento/descenso del AFD y el contraste de conductividad entre conductos de flujo adyacentes. La relación se deriva de cálculos para redes 1D pero se demuestra que es útil incluso para la interpretación de datos para casos 2D y 3D más complejos. En una aplicación a datos de redes de fracturas en un emplazamiento real, se identifica la presencia de agrupaciones de conductos de flujo mediante el gráfico AFD. En general, el análisis AFD se muestra como una herramienta útil para detectar los cambios de conductividad/dimensionalidad en el sistema de flujo, y puede servir como uno de los diferentes tipos de datos que pueden ser analizados conjuntamente para caracterizar un sistema de flujo heterogéneo.

摘要

测井分析中的广义径向流(GRF)模型采用非整数的流动尺寸表示流动面积相对于井孔径向距离的变化。然而,流动尺寸不仅受到流动面积变化的影响,而且还受到流动介质中渗透性变化的影响。在本文中,来自流量维度和渗透性/传导性变化的综合影响的流量尺寸被解释为视流量尺寸(AFD)。AFD是利用压力瞬态试验中的降深-时间图的二阶导数来确定的,它可能产生与时间变化的非整数值。介绍了一套系统的调查,从一维、二维和三维(分别为1D、2D和3D)的理想化渠道网络开始,到基于实际场地数据的复杂裂隙网络的案例研究。有趣的是,AFD的上升/下降与相邻流动通道之间的传导性对比之间的通用关系已经建立。该关系来自于一维网络的计算,但被证明甚至对更复杂的二维和三维案例的数据解释也是有用的。在对一个真实地点的裂隙网络数据的应用中,使用AFD图确定了流动通道群的存在。总的来说,AFD分析被证明是检测流动系统中导水性/维度变化的有用工具,并可作为联合分析非均质流动系统特征的不同数据类型之一。

Resumo

O modelo de escoamento radial generalizado (ERG) em análises de testes de poços emprega dimensões de fluxo não inteiras para representar a variação na área do escoamento em relação à distância radial de um poço. No entanto, a dimensão de escoamento é influenciada não apenas pelas mudanças na área de escoamento, mas também pelas variações de permeabilidade dentro do meio de escoamento. Neste artigo, a dimensão de escoamento a partir do efeito combinado da dimensionalidade do escoamento e da variação da permeabilidade/condutância é interpretado e referido como dimensionalidade de escoamento aparente (DEA). A DEA é determinada usando a segunda derivada do gráfico rebaixamento-tempo a partir de teste transiente de pressão, que pode ter valores não inteiros variados ao longo do tempo. Um conjunto sistemático de investigações é apresentado, começando por redes de canal idealizadas em uma, duas e três dimensões (1D, 2D e 3D, respectivamente), e procedendo para um estudo de caso com uma rede de fratura complexa baseada em dados de campo reais. Interessantemente, uma relação geral entre o aumento repentino/diminuição da DEA e o contraste de condutância entre canais preferencias de escoamento adjacentes é estabelecida. A relação é derivada a partir de cálculos para redes 1D mas se mostra útil até mesmo para interpretação de casos 2D e 3D mais complexos. Em uma aplicação para dados de rede de fratura em um local real, a presença de agrupamentos de escoamento preferencial é identificada usando o gráfico DEA. Em geral, a análise DEA se mostra uma ferramenta útil na detecção das mudanças de condutância/dimensionalidade em sistema de escoamento e pode servir como um dos diferentes tipos de dados que pode ser analisado conjuntamente para caracterização de um sistema de escoamento heterogêneo

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  • Barker JA (1988) A generalized radial flow model for hydraulic tests in fractured rock. Water Resour Res 24(10):1796–1804. https://doi.org/10.1029/WR024i010p01796

    Article  Google Scholar 

  • Black JH, Woodman ND, Barker JA (2017) Groundwater flow into underground openings in fractured crystalline rocks: an interpretation based on long channels. Hydrogeol J 25(2):445–463. https://doi.org/10.1007/s10040-016-1511-y

    Article  Google Scholar 

  • Bourdet D, Whittle TM, Douglas AA, Pirard YM (1983) New set of type curves simplifies well test analysis. World Oil 196(6):1–7

    Google Scholar 

  • Cacas MC, Ledoux E, Marsily G, Barbreau A, Calmels P, Gaillard B, Margrita R (1990) Modelling fracture flow with a stochastic discrete fracture network: calibration and validation—2, the transport model. Water Resour Res 26(3):491–500

    Google Scholar 

  • Cello PA, Walker DD, Valocchi AJ, Loftis B (2009) Flow dimension and anomalous diffusion of aquifer tests in fracture networks. Vadose Zone J 8(1):258–268. https://doi.org/10.2136/vzj2008.0040

    Article  Google Scholar 

  • Chow VT (1952) On the determination of transmissibility and storage coefficients from pumping test data. Trans Am Geophys Union 33(3):397–404

  • Cinco H, Samaniego VF, Dominguez AN (1978) Transient pressure behavior for a well with a finite-conductivity vertical fracture. Soc Pet Eng J 18(04):253–264. https://doi.org/10.2118/6014-PA

    Article  Google Scholar 

  • Delay F, Porel G, Bernard S (2004) Analytical 2D model to invert hydraulic pumping tests in fractured rocks with fractal behavior. Geophys Res Lett 31(16):2–5. https://doi.org/10.1029/2004GL020500

    Article  Google Scholar 

  • Dessirier B, Tsang CFCF, Niemi A (2018) A new scripting library for modeling flow and transport in fractured rock with channel networks. Comput Geosci 111(April 2017):181–189. https://doi.org/10.1016/j.cageo.2017.11.013

    Article  Google Scholar 

  • Doe T (1991) Fractional dimension analysis of constant-pressure well tests. SPE Pap 22702, Society of Petroleum Engineers, Richardson, TX, pp 461–467

  • Doe T, Geier J (1990) Interpretation of fracture system using well test data. Stripa Project Technical Report 91-03, SKB, Stockholm

  • Ferroud A, Chesnaux R, Rafini S (2018) Insights on pumping well interpretation from flow dimension analysis: the learnings of a multi-context field database. J Hydrol 556:449–474. https://doi.org/10.1016/j.jhydrol.2017.10.008

    Article  Google Scholar 

  • Ferroud A, Rafini S, Chesnaux R (2019) Using flow dimension sequences to interpret non-uniform aquifers with constant-rate pumping-tests: a review. J Hydrol 2:100003. https://doi.org/10.1016/j.hydroa.2018.100003

    Article  Google Scholar 

  • Gringarten AC (2008) From straight lines to deconvolution: the evolution of the state of the art in well test analysis. SPE Reserv Eval Eng 11(1):41–62. https://doi.org/10.2118/102079-pa

    Article  Google Scholar 

  • Gringarten AC, Ramey HJ Jr, Raghavan R (1974) Unsteady-state pressure distributions created by a well with a single infinite-conductivity vertical fracture. Soc Pet Eng J 14(04):347–360. https://doi.org/10.2118/4051-PA

    Article  Google Scholar 

  • Gylling B, Moreno L, Neretnieks I (1999) The channel network model: a tool for transport simulations in fractured media. Ground Water 37(3):367–375. https://doi.org/10.1111/j.1745-6584.1999.tb01113.x

    Article  Google Scholar 

  • Kuusela-Lahtinen A, Poteri A (2010) Interpretation of flow dimensions from constant pressure injection test. Posiva working report 2010-35, Posiva, Eurajoki, Finland

  • Kuusela-Lahtinen A, Niemi A, Luukkonen A (2002) Flow dimension as an indicator of hydraulic behavior in site characterization of fractured rock. Groundwater 41(3):333–341

    Article  Google Scholar 

  • Li SC, Xu ZH, Ma GW (2014) A graph-theoretic pipe network method for water flow simulation in discrete fracture networks: GPNM. Tunn Undergr Space Technol 42:247–263. https://doi.org/10.1016/j.tust.2014.03.012

    Article  Google Scholar 

  • Mahmoudzadeh B, Liu L, Moreno L, Neretnieks I (2013) Solute transport in fractured rocks with stagnant water zone and rock matrix composed of different geological layers: model development and simulations. Water Resour Res 49(3):1709–1727. https://doi.org/10.1002/wrcr.20132

    Article  Google Scholar 

  • Moreno L, Neretnieks I (1993) Fluid flow and solute transport in a network of channels. J Contam Hydrol 14(3–4):163–192. https://doi.org/10.1016/0169-7722(93)90023-L

    Article  Google Scholar 

  • Moreno L, Crawford J, Neretnieks I (2006) Modelling of transport in fractures with complex matrix properties. Materials Research Society symposia proceedings, 932. Materials Research Society, Warrendale, PA, pp 267–274. https://doi.org/10.1557/proc-932-98.1

    Article  Google Scholar 

  • Moye DG (1967) Diamond drilling for foundation exploration. Inst Civ Eng Trans 9(1):95–100

  • National Research Council (1996) Rock fractures and fluid flow: contemporary understanding and applications. National Academies Press, Washington, DC

  • Neretnieks I (2006) Channeling with diffusion into stagnant water and into a matrix in series. Water Resour Res 42(11). https://doi.org/10.1029/2005WR004448

  • Odling NE, West LJ, Hartmann S, Kilpatrick A (2013) Fractional flow in fractured chalk: a flow and tracer test revisited. J Contam Hydrol 147:96–111. https://doi.org/10.1016/j.jconhyd.2013.02.003

    Article  Google Scholar 

  • Rafini S, Larocque M (2009) Insights from numerical modeling on the hydrodynamics of non-radial flow in faulted media. Adv Water Resour 32(8):1170–1179. https://doi.org/10.1016/j.advwatres.2009.03.009

    Article  Google Scholar 

  • Rafini S, Chesnaux R, Ferroud A (2017) A numerical investigation of pumping-test responses from contiguous aquifers. Hydrogeol J 25(3):877–894. https://doi.org/10.1007/s10040-017-1560-x

    Article  Google Scholar 

  • Renard P, Glenz D, Mejias M (2009) Understanding diagnostic plots for well-test interpretation. Hydrogeol J 17(3):589–600. https://doi.org/10.1007/s10040-008-0392-0

    Article  Google Scholar 

  • Rutqvist J, Noorishad J, Tsang C, Stephansson O (1998) Determination of fracture storativity in hard rocks using high-pressure injection testing. Water Resour Res 34(10):2551–2560

    Article  Google Scholar 

  • Selroos JO, Walker DD, Anders S, Gylling B, Follin S (2002) Comparison of alternative modelling approaches for groundwater flow in fractured rock. J Hydrol 257:174–188

    Article  Google Scholar 

  • Shahkarami P, Liu L, Moreno L, Neretnieks I (2016) The effect of stagnant water zones on retarding radionuclide transport in fractured rocks: an extension to the Channel Network Model. J Hydrol 540:1122–1135. https://doi.org/10.1016/j.jhydrol.2016.07.031

    Article  Google Scholar 

  • Sharma KM, Geier J, Dessirier B, Stothoff S, Pensado O, Tsang C, Niemi A (2022) An investigation into flow and transport in a complex fracture network in deep crystalline rock based on a channel network model. The XXIV International Conference on Computational Methods in Water Resources (CMWR), Gdansk, Poland, June 2022

  • SKB (2008) Site description of Forsmark at completion of the site investigation phase - SDM-Site Forsmark. Technical report TR-08-05. https://skb.se/publication/1868223/TR-08-05.pdf. Accessed February 2023

  • SKB (2011) SR-Site main report. SKB technical report TR-11-01, SKB, Stockholm

  • Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage. EOS Trans Am Geophys Union 16(2):519–524. https://doi.org/10.1029/TR016i002p00519

    Article  Google Scholar 

  • Theory of unsteady-state influx of water in linear reservoirs. J Inst Pet 48(467):365–379

  • Verbovšek T (2009) Influences of aquifer properties on flow dimensions in dolomites. Groundwater 47(5):660–668. https://doi.org/10.1111/j.1745-6584.2009.00577.x

    Article  Google Scholar 

  • Walker D, Roberts R (2003) Flow dimensions corresponding to hydrogeological conditions. Water Resour Res 39(12):1349

    Article  Google Scholar 

  • Walker DD, Cello PA, Valocchi AJ, Loftis B (2006) Flow dimensions corresponding to stochastic models of heterogeneous transmissivity. Geophys Res Lett 33(7). https://doi.org/10.1029/2006GL025695

Download references

Acknowledgements

The authors would like to express their gratitude to Joel Geier of Clearwater Hardrock Consulting (USA) for sharing data, as well as to Osvaldo Pensado and Stuart Stothoff of Southwest Research Institute for discussions during the course of this study.

Funding

The authors would like to acknowledge funding from Swedish Radiation Safety Authority (SSM) for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunwar Mrityunjai Sharma.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K.M., Dessirier, B., Tsang, CF. et al. Apparent flow-dimension approach to the study of heterogeneous fracture network systems. Hydrogeol J 31, 873–891 (2023). https://doi.org/10.1007/s10040-023-02622-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-023-02622-9

Keywords

Navigation