Skip to main content
Log in

Infrared laser generation by cascaded difference frequency generation combined with optical parametric oscillator

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We introduce an infrared laser generation scheme by cascaded difference frequency generation (CDFG) combined with optical parametric oscillator (OPO). An inventive infrared laser generator is proposed that enable cascaded optical waves, initially generated by CDFG in an aperiodically poled lithium niobate crystal, then continuously and repeatedly transferred to high-order Stokes waves by oscillations of cascaded optical waves, and finally brought out infrared laser from the high-order Stokes waves with specially designed OPO. We explain the physical mechanism of the above infrared laser generation process and demonstrate wide frequency tuning characteristics and high conversion efficiency characteristics of the infrared laser generator by providing theoretical research. The frequency tuning from pump frequency to 60 THz with a high conversion efficiency are realized by numerical calculations. The infrared laser generator exhibits physics distinctly different from lasers by atomic transitions, optical parametric oscillation or difference frequency generation. We consider that the infrared laser generator based on CDFG combined with OPO is promising for achieving high-efficiency and high-power infrared laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. Sereda, O.V., Tarasenko, V.F., Fedenev, A.V., Yakovlenko, S.I.: High-power ir lasers operating on xe i transitions. Quantum Electron. 23(6), 459 (1993)

    Article  ADS  Google Scholar 

  2. Siegman, A.E.: Lasers University Science Books (1986).

  3. Belkin, M.A., Capasso, F., Belyanin, A., Sivco, D.L., Cho, A.Y., Oakley, D.C., Vineis, C.J., Turner, G.W.: Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation. Nat. Photonics 1, 288–292 (2007)

    Article  ADS  Google Scholar 

  4. Baumgartner, R., Byer, R.: Optical parametric amplification. IEEE J. Quantum Electron. 15(6), 432–444 (1979)

    Article  ADS  Google Scholar 

  5. Chen, A.Y.H., Wong, G.K.L., Murdoch, S.G., Leonhardt, R., Harvey, J.D., Knight, J.C., Wadsworth, W.J., Russell, P.S.J.: Widely tunable optical parametric generation in a photonic crystal fiber. Opt. Lett. 30, 762–764 (2005)

    Article  ADS  Google Scholar 

  6. Vodopyanov, K.L., Levi, O., Kuo, P.S., Pinguet, T.J., Harris, J.S., Fejer, M.M., Gerard, B., Becouarn, L., Lallier, E.: Optical parametric oscillation in quasi-phase-matched GaAs. Opt. Lett. 29, 1912–1914 (2004)

    Article  ADS  Google Scholar 

  7. Li, Z.Y., Jiao, B.Z., Liu, W.K., Hu, Q.F., Zhang, G.G., Yan, Q.Z., Bing, P.B., Zhang, F.R., Wang, Z., Yao, J.Q.: High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation. Chin. Phys. B 30, 044211 (2021)

    Article  ADS  Google Scholar 

  8. Ravi, K., Schimpf, D.N., Kärtner, F.X.: Pulse sequences for efficient multi-cycle terahertz generation in periodically poled lithium niobate. Opt. Express 24, 25582–25607 (2016)

    Article  ADS  Google Scholar 

  9. Schreiber, G., Suche, H., Lee, Y.L., Grundkötter, W., Quiring, V., Ricken, R., Sohler, W.: Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping. Appl. Phys. B 73, 501–504 (2001)

    Article  ADS  Google Scholar 

  10. Saito, K., Tanabe, T., Oyama, Y.: Cascaded terahertz-wave generation efficiency in excess of the Manley–Rowe limit using a cavity phase-matched optical parametric oscillator. J. Opt. Soc. Am. B 32, 617–621 (2015)

    Article  ADS  Google Scholar 

  11. Liu, P.X., Qi, F., Pang, Z.B., Li, W.F., Wang, Y.L., Liu, Z.Y., Meng, D.L.: Cascaded difference frequency generation in organic crystal 4′-dimethylamino-N-methyl-4-stilbazolium tosylate. Opt. Lett. 44, 4965–4968 (2019)

    Article  ADS  Google Scholar 

  12. Li, Z.Y., Sun, X.Q., Zhang, H.T., Li, Y.J., Yuan, B., Jiao, B.Z., Zhao, J., Tan, L., Bing, P.B., Wang, Z., Yao, J.Q.: High-efficiency terahertz wave generation in aperiodically poled lithium niobate by cascaded difference frequency generation. J. Opt. Soc. Am. B 37, 2416–2422 (2020)

    Article  ADS  Google Scholar 

  13. Ravi, K., Krtner, F.X.: Raman shifting induced by cascaded quadratic nonlinearities for terahertz generation. Laser Photonics Rev. 14, 2000109 (2020)

    Article  ADS  Google Scholar 

  14. Yang, L., Zhong, K., Wang, A.Q., Zhou, M.C., Li, S.C., Gao, L., Zhang, Z.: Optical terahertz sources based on difference frequency generation in nonlinear crystals. Curr. Comput. Aided Drug Des. 12(7), 936 (2022)

    Google Scholar 

  15. Li, W.F., Qi, F., Liu, P.X., Wang, Y.L., Liu, Z.Y.: Cascaded effect in a high-peak-power terahertz-wave parametric generator. Opt. Lett. 47, 178–181 (2022)

    Article  ADS  Google Scholar 

  16. Kiessling, J., Sowade, R., Breunig, I., Buse, K., Dierolf, V.: Cascaded optical parametric oscillations generating tunable terahertz waves in periodically poled lithium niobate crystals. Opt. Express 17, 87–91 (2009)

    Article  ADS  Google Scholar 

  17. Li, Z.Y., Yan, Q.Z., Liu, P.X., Jiao, B.Z., Zhang, G.G., Chen, Z.L., Bing, P.B., Yuan, S., Zhong, K., Yao, J.Q.: THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves. Chin. Phys. B 31, 074209 (2022)

    Article  ADS  Google Scholar 

  18. Jundt, D.H.: Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate. Opt. Lett. 22, 1553–1555 (1997)

    Article  ADS  Google Scholar 

  19. Pálfalvi, L., Hebling, J., Kuhl, J., Ṕter, Á., Polgár, K.: Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range. J Appl. Phys. 97, 123505 (2005)

    Article  ADS  Google Scholar 

  20. Fülöp, J.A., Pálfalvi, L., Hoffmann, M.C., Hebling, J.: Towards generation of mJ-level ultrashort THz pulses by optical rectification. Opt. Express 19, 15090–15097 (2011)

    Article  ADS  Google Scholar 

  21. Li, Z.Y., Zhang, G.G., Liu, P.X., Chen, X.H., Xu, J., Sun, X.Q., Bing, P.B., Yuan, S., Zhong, K., Yao, J.Q.: Proposal for nonlinear optical frequency conversion by cascaded difference frequency generation. J. Opt. Soc. Am. B 39, 2306 (2022)

    Article  Google Scholar 

Download references

Funding

Project supported by the National Natural Science Foundation of China (61735010, 61601183); Natural Science Foundation of Henan Province (162300410190); Key Scientific Research Project of Henan Universities, (19A510004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyang Li.

Ethics declarations

Conflict of interest

The authors have no conflict of interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Shi, C., Li, Z. et al. Infrared laser generation by cascaded difference frequency generation combined with optical parametric oscillator. Opt Rev 30, 199–207 (2023). https://doi.org/10.1007/s10043-023-00800-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-023-00800-4

Keywords

Navigation