Skip to main content
Log in

The medial and lateral substantia nigra in Parkinson’s disease: mRNA profiles associated with higher brain tissue vulnerability

  • Original Article
  • Published:
Neurogenetics Aims and scope Submit manuscript

Abstract

Sporadic Parkinson’s disease (PD) is characterized by progressive death of dopaminergic neurons within the substantia nigra. However, pathological cell death within this nucleus is not uniform. In PD, the lateral tier of the substantia nigra (SNl) degenerates earlier and more severely than the more medial nigral component (SNm). The cause of this brain regional vulnerability remains unknown. We have used DNA oligonucleotide microarrays to compare gene expression profiles from the SNl to those of the SNm in both PD and control cases. Genes expressed more highly in the PD SNl included the cell death gene, p53 effector related to PMP22, the tumour necrosis factor (TNF) receptor gene, TNF receptor superfamily, member 21, and the mitochondrial complex I gene, NADH dehydrogenase (ubiquinone) 1β subcomplex, 3, 12 kDa (NDUFβ3). Genes that were more highly expressed in PD SNm included the dopamine cell signalling gene, cyclic adenosine monophosphate-regulated phosphoprotein, 21 kDa, the activated macrophage gene, stabilin 1, and two glutathione peroxidase (GPX) genes, GPX1 and GPX3. Thus, there is increased expression of genes encoding pro-inflammatory cytokines and subunits of the mitochondrial electron transport chain, and there is a decreased expression of several glutathione-related genes in the SNl suggesting a molecular basis for pathoclisis. Importantly, some of the genes that are differentially regulated in the SNl are known to be expressed highly or predominately in glial cells. These findings support the view that glial cells can be primarily affected in PD emphasizing the importance of using a whole tissue approach when investigating degenerative CNS disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114(Pt 5):2283–2301

    Article  PubMed  Google Scholar 

  2. German DC, Manaye K, Smith WK, Woodward DJ, Saper CB (1989) Midbrain dopaminergic cell loss in Parkinson’s disease: computer visualization. Ann Neurol 26:507–514

    Article  PubMed  CAS  Google Scholar 

  3. Gibb WR (1991) Neuropathology of the substantia nigra. Eur Neurol 31(Suppl 1):48–59

    PubMed  Google Scholar 

  4. Gibb WR, Fearnley JM, Lees AJ (1990) The anatomy and pigmentation of the human substantia nigra in relation to selective neuronal vulnerability. Adv Neurol 53:31–34

    PubMed  CAS  Google Scholar 

  5. Gibb WR, Lees AJ (1991) Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. J Neurol Neurosurg Psychiatry 54:388–396

    Article  PubMed  CAS  Google Scholar 

  6. Parent A, Mackey A, De Bellefeuille L (1983) The subcortical afferents to caudate nucleus and putamen in primate: a fluorescence retrograde double labeling study. Neuroscience 10:1137–1150

    Article  PubMed  CAS  Google Scholar 

  7. Carpenter MB, Peter P (1972) Nigrostriatal and nigrothalamic fibers in the rhesus monkey. J Comp Neurol 144:93–115

    Article  PubMed  CAS  Google Scholar 

  8. Szabo J (1980) Organization of the ascending striatal afferents in monkeys. J Comp Neurol 189:307–321

    Article  PubMed  CAS  Google Scholar 

  9. Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 318:876–880

    Article  PubMed  CAS  Google Scholar 

  10. Delong MR, Georgopoulos AP, Crutcher MD, Mitchell SJ, Richardson RT, Alexander GE (1984) Functional organization of the basal ganglia: contributions of single-cell recording studies. Ciba Found Symp 107:64–82

    PubMed  CAS  Google Scholar 

  11. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    Article  PubMed  CAS  Google Scholar 

  12. Okamura H, Yokoyama C, Ibata Y (1995) Lateromedial gradient of the susceptibility of midbrain dopaminergic neurons to neonatal 6-hydroxydopamine toxicity. Exp Neurol 136:136–142

    Article  PubMed  CAS  Google Scholar 

  13. Schneider JS, Yuwiler A, Markham CH (1987) Selective loss of subpopulations of ventral mesencephalic dopaminergic neurons in the monkey following exposure to MPTP. Brain Res 411:144–150

    Article  PubMed  CAS  Google Scholar 

  14. Varastet M, Riche D, Maziere M, Hantraye P (1994) Chronic MPTP treatment reproduces in baboons the differential vulnerability of mesencephalic dopaminergic neurons observed in Parkinson’s disease. Neuroscience 63:47–56

    Article  PubMed  CAS  Google Scholar 

  15. McNaught KS, Perl DP, Brownell AL, Olanow CW (2004) Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann Neurol 56:149–162

    Article  PubMed  CAS  Google Scholar 

  16. Zecca L, Zucca FA, Wilms H, Sulzer D (2003) Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci 26:578–580

    Article  PubMed  CAS  Google Scholar 

  17. Shamoto-Nagai M, Maruyama W, Yi H, Akao Y, Tribl F, Gerlach M, Osawa T, Riederer P, Naoi M (2006) Neuromelanin induces oxidative stress in mitochondria through release of iron: mechanism behind the inhibition of 26S proteasome. J Neural Transm 113:633–644

    Article  PubMed  CAS  Google Scholar 

  18. Shamoto-Nagai M, Maruyama W, Akao Y, Osawa T, Tribl F, Gerlach M, Zucca FA, Zecca L, Riederer P, Naoi M (2004) Neuromelanin inhibits enzymatic activity of 26S proteasome in human dopaminergic SH-SY5Y cells. J Neural Transm 111:1253–1265

    Article  PubMed  CAS  Google Scholar 

  19. Gibb WR (1992) Melanin, tyrosine hydroxylase, calbindin and substance P in the human midbrain and substantia nigra in relation to nigrostriatal projections and differential neuronal susceptibility in Parkinson’s disease. Brain Res 581:283–291

    Article  PubMed  CAS  Google Scholar 

  20. Nishio T, Furukawa S, Akiguchi I, Sunohara N (1998) Medial nigral dopamine neurons have rich neurotrophin support in humans. NeuroReport 9:2847–2851

    Article  PubMed  CAS  Google Scholar 

  21. Barroso-Chinea P, Cruz-Muros I, Aymerich MS, Rodriguez-Diaz M, Afonso-Oramas D, Lanciego JL, Gonzalez-Hernandez T (2005) Striatal expression of GDNF and differential vulnerability of midbrain dopaminergic cells. Eur J Neurosci 21:1815–1827

    Article  PubMed  Google Scholar 

  22. Gonzalez-Hernandez T, Barroso-Chinea P, De La Cruz Muros I, Del Mar Perez-Delgado M, Rodriguez M (2004) Expression of dopamine and vesicular monoamine transporters and differential vulnerability of mesostriatal dopaminergic neurons. J Comp Neurol 479:198–215

    Article  PubMed  CAS  Google Scholar 

  23. Shimada S, Kitayama S, Walther D, Uhl G (1992) Dopamine transporter mRNA: dense expression in ventral midbrain neurons. Mol Brain Res 13:359–362

    Article  PubMed  CAS  Google Scholar 

  24. Cerruti C, Walther DM, Kuhar MJ, Uhl GR (1993) Dopamine transporter mRNA expression is intense in rat midbrain neurons and modest outside midbrain. Mol Brain Res 18:181–186

    Article  PubMed  CAS  Google Scholar 

  25. Yamada T, McGeer PL, Baimbridge KG, McGeer EG (1990) Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res 526:303–307

    Article  PubMed  CAS  Google Scholar 

  26. Lavoie B, Parent A (1991) Dopaminergic neurons expressing calbindin in normal and parkinsonian monkeys. NeuroReport 2:601–604

    Article  PubMed  CAS  Google Scholar 

  27. Gaspar P, Ben Jelloun N, Febvret A (1994) Sparing of the dopaminergic neurons containing calbindin-D28k and of the dopaminergic mesocortical projections in weaver mutant mice. Neuroscience 61:293–305

    Article  PubMed  CAS  Google Scholar 

  28. Vogt C, Vogt O (1922) Erkrankungen der Grosshirnrinde im Lichte der Topistik, Pathoklise und Pathoarchitektonik. J Psychol Neurol 28:1–171

    Google Scholar 

  29. Miyoshi K (1967) Experimental striatal necrosis induced by sodium azide. A contribution to the problem of selective vulnerability and histochemical studies of enzymatic activity. Acta Neuropathol (Berl) 9:199–216

    Article  CAS  Google Scholar 

  30. Moran LB, Duke DC, Deprez M, Dexter DT, Pearce RK, Graeber MB (2006) Whole genome expression profiling of the medial and lateral substantia nigra in Parkinson’s disease. Neurogenetics:1–11

  31. Moran LCED, DC, Kalaitzakis ME, RonCaroli F, Deprez M, Dexter D, Pearce RKB, Graeber MB (2006) Analysis of alpha-synuclien, dopamine and parkin pathways in neuropathologically confirmed Parkinson’s disease. Acta Neuropathol (Berl) (in press)

  32. Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122(Pt 8):1437–1448

    Article  PubMed  Google Scholar 

  33. Moran LB, Duke DC, Turkheimer FE, Banati RB, Graeber MB (2004) Towards a transcriptome definition of microglial cells. Neurogenetics 5:95–108

    Article  PubMed  CAS  Google Scholar 

  34. Moran LB, Hickey L, Duke DC, Derkacs M, Michael GJ, Croisier E, Dexter DT, Pearce RKB, Graeber MB (2006) Expression profiling demonstrates cerebral cortex involvement in Parkinson’s disease. In: Society for Neuroscience Annual Meeting. 2006 Atlanta, USA

  35. Jaques LBM, Pearce RKB, Graeber MB, Durrenberger P (2006) Huntingtin interacting protein 2 (Hip2) expression in Parkinson’s disease. In: Society for Neuroscience Annual Meeting. 2006 Atlanta, USA

  36. Wu Z, Irizarry RA (2004) Preprocessing of oligonucleotide array data. Nat Biotechnol 22:656–658, author reply 658

    Article  PubMed  CAS  Google Scholar 

  37. Blalock EM, Chen KC, Stromberg AJ, Norris CM, Kadish I, Kraner SD, Porter NM, Landfield PW (2005) Harnessing the power of gene microarrays for the study of brain aging and Alzheimer’s disease: statistical reliability and functional correlation. Ageing Res Rev 4:481–512

    PubMed  CAS  Google Scholar 

  38. Mirnics K, Middleton FA, Lewis DA, Levitt P (2001) The human genome: gene expression profiling and schizophrenia. Am J Psychiatry 158:1384

    Article  PubMed  CAS  Google Scholar 

  39. Quackenbush J (2003) Genomics. Microarrays—guilt by association. Science 302:240–241

    Article  PubMed  CAS  Google Scholar 

  40. Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW (2004) Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci USA 101:2173–2178

    Article  PubMed  CAS  Google Scholar 

  41. Moran L, Duke DC, Graeber MB (2006) The microglial gene regulatory network activated by interferon-gamma. J Neuroimmunol (in press)

  42. Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671

    Article  PubMed  CAS  Google Scholar 

  43. Greene JG, Dingledine R, Greenamyre JT (2005) Gene expression profiling of rat midbrain dopamine neurons: implications for selective vulnerability in parkinsonism. Neurobiol Dis 18:19–31

    Article  PubMed  CAS  Google Scholar 

  44. Nagatsu T, Sawada M (2005) Inflammatory process in Parkinson’s disease: role for cytokines. Curr Pharm Des 11:999–1016

    Article  PubMed  CAS  Google Scholar 

  45. Sriram K, Miller DB, O’Callaghan JP (2006) Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-alpha. J Neurochem 96:706–718

    Article  PubMed  CAS  Google Scholar 

  46. Stefanova N, Schanda K, Klimaschewski L, Poewe W, Wenning GK, Reindl M (2003) Tumor necrosis factor-alpha-induced cell death in U373 cells overexpressing alpha-synuclein. J Neurosci Res 73:334–340

    Article  PubMed  CAS  Google Scholar 

  47. Barcia C, de Pablos V, Bautista-Hernandez V, Sanchez-Bahillo A, Bernal I, Fernandez-Villalba E, Martin J, Banon R, Fernandez-Barreiro A, Herrero MT (2005) Increased plasma levels of TNF-alpha but not of IL1-beta in MPTP-treated monkeys one year after the MPTP administration. Parkinsonism Relat Disord 11:435–439

    Article  PubMed  Google Scholar 

  48. Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O’Callaghan JP (2002) Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson’s disease. FASEB J 16:1474–1476

    PubMed  CAS  Google Scholar 

  49. Nishimura M, Mizuta I, Mizuta E, Yamasaki S, Ohta M, Kaji R, Kuno S (2001) Tumor necrosis factor gene polymorphisms in patients with sporadic Parkinson’s disease. Neurosci Lett 311:1–4

    Article  PubMed  CAS  Google Scholar 

  50. Mogi M, Togari A, Tanaka K, Ogawa N, Ichinose H, Nagatsu T (1999) Increase in level of tumor necrosis factor (TNF)-alpha in 6-hydroxydopamine-lesioned striatum in rats without influence of systemic l-DOPA on the TNF-alpha induction. Neurosci Lett 268:101–104

    Article  PubMed  CAS  Google Scholar 

  51. Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC (1994) Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett 172:151–154

    Article  PubMed  CAS  Google Scholar 

  52. Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T (1994) Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165:208–210

    Article  PubMed  CAS  Google Scholar 

  53. McNaught KS, Belizaire R, Isacson O, Jenner P, Olanow CW (2003) Altered proteasomal function in sporadic Parkinson’s disease. Exp Neurol 179:38–46

    Article  PubMed  CAS  Google Scholar 

  54. McNaught KS, Belizaire R, Jenner P, Olanow CW, Isacson O (2002) Selective loss of 20S proteasome alpha-subunits in the substantia nigra pars compacta in Parkinson’s disease. Neurosci Lett 326:155–158

    Article  PubMed  CAS  Google Scholar 

  55. Duke DC, Moran LB, Kalaitzakis ME, Deprez M, Dexter DT, Pearce RK, Graeber MB (2006) Transcriptome analysis reveals link between proteasomal and mitochondrial pathways in Parkinson’s disease. Neurogenetics

  56. Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, Jenner P, Marsden CD (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36:348–355

    Article  PubMed  CAS  Google Scholar 

  57. Sian J, Dexter DT, Lees AJ, Daniel S, Jenner P, Marsden CD (1994) Glutathione-related enzymes in brain in Parkinson’s disease. Ann Neurol 36:356–361

    Article  PubMed  CAS  Google Scholar 

  58. Ridet JL, Bensadoun JC, Deglon N, Aebischer P, Zurn AD (2005) Lentivirus-mediated expression of glutathione peroxidase: neuroprotection in murine models of Parkinson’s disease. Neurobiol Dis

  59. Whitworth AJ, Theodore DA, Greene JC, Benes H, Wes PD, Pallanck LJ (2005) Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. Proc Natl Acad Sci USA 102:8024–8029

    Article  PubMed  CAS  Google Scholar 

  60. Stroombergen MC, Waring RH (1999) Determination of glutathione S-transferase mu and theta polymorphisms in neurological disease. Hum Exp Toxicol 18:141–145

    Article  PubMed  CAS  Google Scholar 

  61. Zeevalk GD, Bernard LP, Albers DS, Mirochnitchenko O, Nicklas WJ, Sonsalla PK (1997) Energy stress-induced dopamine loss in glutathione peroxidase-overexpressing transgenic mice and in glutathione-depleted mesencephalic cultures. J Neurochem 68:426–429

    Article  PubMed  CAS  Google Scholar 

  62. Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW (1999) Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev 30:77–105

    Article  PubMed  CAS  Google Scholar 

  63. Heales SJ, Lam AA, Duncan AJ, Land JM (2004) Neurodegeneration or neuroprotection: the pivotal role of astrocytes. Neurochem Res 29:513–519

    Article  PubMed  CAS  Google Scholar 

  64. Dringen R (2005) Oxidative and antioxidative potential of brain microglial cells. Antioxid Redox Signal 7:1223–1233

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was funded by the UK Parkinson’s Disease Society. The Parkinson’s Disease Society Tissue Bank at Imperial College London is a registered charity 948776. We express our deepest appreciation to the donors and their families for donating human brain tissue for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Graeber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duke, D.C., Moran, L.B., Pearce, R.K.B. et al. The medial and lateral substantia nigra in Parkinson’s disease: mRNA profiles associated with higher brain tissue vulnerability. Neurogenetics 8, 83–94 (2007). https://doi.org/10.1007/s10048-006-0077-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-006-0077-6

Keywords

Navigation