Skip to main content

Advertisement

Log in

A novel deletion–insertion mutation identified in exon 3 of FXN in two siblings with a severe Friedreich ataxia phenotype

  • ORIGINAL ARTICLE
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease most commonly caused by a GAA trinucleotide repeat expansion in the first intron of FXN, which reduces expression of the mitochondrial protein frataxin. Approximately 98% of individuals with FRDA are homozygous for GAA expansions, with the remaining 2% compound heterozygotes for a GAA expansion and a point mutation within FXN. Two siblings with early onset of symptoms experienced rapid loss of ambulation by 8 and 10 years. Diagnostic testing for FRDA demonstrated one GAA repeat expansion of 1010 repeats and one non-expanded allele. Sequencing all five exons of FXN identified a novel deletion-insertion mutation in exon 3 (c.371_376del6ins15), which results in a modified frataxin protein sequence at amino acid positions 124–127. Specifically, the amino acid sequence changes from DVSF to VHLEDT, increasing frataxin from 211 residues to 214. Using the known structure of human frataxin, a theoretical 3D model of the mutant protein was developed. In the event that the modified protein is expressed and stable, it is predicted that the acidic interface of frataxin, known to be involved in iron binding and interactions with the iron–sulphur cluster assembly factor IscU, would be impaired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pandolfo M (2006) In: Wells RD, Ashizawa T (eds) Friedreich's ataxia. in Genetic Instabilities and Neurological Diseases. Academic, New York, pp 277–296

    Chapter  Google Scholar 

  2. Delatycki MB, Williamson R, Forrest SM (2000) Friedreich ataxia: an overview. J Med Genet 37:1–8

    Article  PubMed  CAS  Google Scholar 

  3. Puccio H, Koenig M (2002) Friedreich ataxia: a paradigm for mitochondrial diseases. Curr Opin Genet Dev 12:272–277

    Article  PubMed  CAS  Google Scholar 

  4. Wilson CL, Fahey MC, Corben LA et al (2007) Quality of life in Friedreich ataxia: what clinical, social and demographic factors are important? Eur J Neurol 14:1040–1047

    Article  PubMed  CAS  Google Scholar 

  5. Delatycki MB, Paris DB, Gardner RJ et al (1999) Clinical and genetic study of Friedreich ataxia in an Australian population. Amer J of Med Genet 87:168–174

    Article  CAS  Google Scholar 

  6. Cruz-Marino T, Gonzalez-Zaldivar Y, Laffita-Mesa JM et al (2010) Uncommon features in Cuban families affected with Friedreich ataxia. Neurosci Lett 472:85–89

    Article  PubMed  CAS  Google Scholar 

  7. Harding AE (1981) Friedreich's ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104:589–620

    Article  PubMed  CAS  Google Scholar 

  8. Porter N, Downes SM, Fratter C, Anslow P, Nemeth AH (2007) Catastrophic visual loss in a patient with Friedreich ataxia. Arch Ophthalmol 125:273–274

    Article  PubMed  Google Scholar 

  9. Fahey MC, Cremer PD, Aw ST et al (2008) Vestibular, saccadic and fixation abnormalities in genetically confirmed Friedreich ataxia. Brain 131:1035–1045

    Article  PubMed  Google Scholar 

  10. Rance G, Corben L, Barker E et al (2010) Auditory perception in individuals with Friedreich's ataxia. Audiol Neurootol 15:229–240

    Article  PubMed  Google Scholar 

  11. Rance G, Fava R, Baldock H et al (2008) Speech perception ability in individuals with Friedreich ataxia. Brain 131:2002–2012

    Article  PubMed  Google Scholar 

  12. Corben LA, Delatycki MB, Bradshaw JL et al (2010) Impairment in motor reprogramming in Friedreich ataxia reflecting possible cerebellar dysfunction. J Neurol 257:782–791

    Article  PubMed  Google Scholar 

  13. Fielding J, Corben L, Cremer P, Millist L, White O, Delatycki M (2010) Disruption to higher order processes in Friedreich ataxia. Neuropsychologia 48:235–242

    Article  PubMed  Google Scholar 

  14. Connelly T, Farmer JM, Lynch DR, Doty RL (2003) Olfactory dysfunction in degenerative ataxias. J Neurol Neurosurg & Psych 74:1435–1437

    Article  CAS  Google Scholar 

  15. Lynch DR, Farmer JM, Balcer LJ, Wilson RB (2002) Friedreich ataxia: effects of genetic understanding on clinical evaluation and therapy.[see comment]. Arch Neurol 59:743–747

    Article  PubMed  Google Scholar 

  16. Rouault TA, Tong WH (2008) Iron-sulphur cluster biogenesis and human disease. Trends Genet 24:398–407

    Article  PubMed  CAS  Google Scholar 

  17. Santos R, Lefevre S, Sliwa D, Seguin A, Camadro JM, Lesuisse E (2010) Friedreich ataxia: molecular mechanisms, redox considerations, and therapeutic opportunities. Antioxid Redox Signal 13:651–690

    Article  PubMed  CAS  Google Scholar 

  18. Huang ML, Becker EM, Whitnall M, Rahmanto YS, Ponka P, Richardson DR (2009) Elucidation of the mechanism of mitochondrial iron loading in Friedreich's ataxia by analysis of a mouse mutant. Proc Natl Acad Sci U S A 106:16381–16386

    Article  PubMed  Google Scholar 

  19. De Biase I, Rasmussen A, Endres D et al (2007) Progressive GAA expansions in dorsal root ganglia of Friedreich's ataxia patients. Ann Neurol 61:55–60

    Article  PubMed  Google Scholar 

  20. Puccio H (2007) Conditional mouse models for Friedreich ataxia, a neurodegenerative disorder associating cardiomyopathy. Handb Exp Pharmacol 178:365–375

    Article  PubMed  CAS  Google Scholar 

  21. Sparaco M, Gaeta LM, Santorelli FM et al (2009) Friedreich's ataxia: oxidative stress and cytoskeletal abnormalities. J Neurol Sci 287:111–118

    Article  PubMed  CAS  Google Scholar 

  22. Campuzano V, Montermini L, Molto M et al (1996) Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427

    Article  PubMed  CAS  Google Scholar 

  23. Gordon N (2000) Friedreich's ataxia and iron metabolism. Brain & Dev 22:465–468

    Article  CAS  Google Scholar 

  24. Cossee M, Durr A, Schmitt M et al (1999) Friedreich's ataxia: point mutations and clinical presentation of compound heterozygotes. Ann Neurol 45:200–206

    Article  PubMed  CAS  Google Scholar 

  25. De Castro M, Garcia-Planells J, Monros E et al (2000) Genotype and phenotype analysis of Friedreich's ataxia compound heterozygous patients. Hum Genet 106:86–92

    Article  PubMed  Google Scholar 

  26. Delatycki MB, Knight M, Koenig M, Cossee M, Williamson R, Forrest SM (1999) G130V, a common FRDA point mutation, appears to have arisen from a common founder. Hum Genet 105:343–346

    Article  PubMed  CAS  Google Scholar 

  27. Subramony SH, May W, Lynch D et al (2005) Measuring Friedreich ataxia: Interrater reliability of a neurologic rating scale. Neurology 64:1261–1262

    Article  PubMed  CAS  Google Scholar 

  28. Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248

    Article  PubMed  Google Scholar 

  29. Hildebrand A, Remmert M, Biegert A, Soding J (2009) Fast and accurate automatic structure prediction with HHpred. Proteins 77(Suppl 9):128–132

    Article  PubMed  CAS  Google Scholar 

  30. Dhe-Paganon S, Shigeta R, Chi YI, Ristow M, Shoelson SE (2000) Crystal structure of human frataxin. J Biol Chem 275:30753–30756

    Article  PubMed  CAS  Google Scholar 

  31. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  32. Goodkin DE, Hertsgaard D, Seminary J (1988) Upper extremity function in multiple sclerosis: improving assessment sensitivity with box-and-block and nine-hole peg tests. Arch Phys Med Rehabil 69:850–854

    PubMed  CAS  Google Scholar 

  33. Corben LA, Tai G, Wilson C, Collins V, Churchyard AJ, Delatycki MB (2010) A comparison of three measures of upper limb function in Friedreich ataxia. J Neurol 257:518–523

    Article  PubMed  CAS  Google Scholar 

  34. Bencze KZ, Kondapalli KC, Cook JD et al (2006) The structure and function of frataxin. Crit Rev Biochem Mol Biol 41:269–291

    Article  PubMed  CAS  Google Scholar 

  35. Bencze KZ, Yoon T, Millan-Pacheco C et al (2007) Human frataxin: iron and ferrochelatase binding surface. Chem Commun (Camb) 18:1798–1800

    Article  Google Scholar 

  36. Stemmler TL, Lesuisse E, Pain D, Dancis A (2010) Frataxin and mitochondrial FeS cluster biogenesis. J Biol Chem 285:26737–26743

    Article  PubMed  CAS  Google Scholar 

  37. La Pean A, Jeffries N, Grow C, Ravina B, Di Prospero NA (2008) Predictors of progression in patients with Friedreich ataxia. Mov Disord 23:2026–2032

    PubMed  Google Scholar 

  38. Streisinger G, Okada Y, Emrich J et al (1966) Frameshift mutations and the genetic code. This paper is dedicated to Professor Theodosius Dobzhansky on the occasion of his 66th birthday. Cold Spring Harb Symp Quant Biol 31:77–84

    PubMed  CAS  Google Scholar 

  39. van Noort V, Worning P, Ussery DW, Rosche WA, Sinden RR (2003) Strand misalignments lead to quasipalindrome correction. Trends Genet 19:365–369

    Article  PubMed  Google Scholar 

  40. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  41. Correia AR, Wang T, Craig EA, Gomes CM (2010) Iron-binding activity in yeast frataxin entails a trade off with stability in the alpha1/beta1 acidic ridge region. Biochem J 426:197–203

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely thank the participating family as well as Gabrielle Wilson and Paul Lockhart for their assistance. This study was supported by funding from the Friedreich Ataxia Research Alliance, USA, the Friedreich Ataxia Research Association, Australasia, the Australian Rotary Health Research Fund, the North Brighton Rotary Club, the Collier Charitable Fund of Australia and the Victorian Government Operational Infrastructure Support Program. MBD is a National Health and Medical Research Council of Australia Practitioner Fellow.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin B. Delatycki.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Multiple amino acid sequence alignment of frataxin from various species. The alignment was performed using ClustalW2 on the Protein Information Resource (PRI) website (http://pir.georgetown.edu/pirwww/index.shtml). Amino acid residues known to bind iron are coloured red while residues involved in binding to IscU are blue and those that bind to both iron and IscU are green [36]. The site of the deletion–insertion mutation is in bold. (JPEG 213 kb)

High Resolution Image (TIFF 1190 kb)

Supplementary Fig. 2

Amino acid sequence alignment of the yeast and human Fe-S cluster scaffold proteins Isu1p and IscU. The alignment was performed using Clustal W2 on the Protein Information Resource (PRI) website (http://pir.georgetown.edu/pirwww/index.shtml). (JPEG 37 kb)

High Resolution Image (TIFF 361 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans-Galea, M.V., Corben, L.A., Hasell, J. et al. A novel deletion–insertion mutation identified in exon 3 of FXN in two siblings with a severe Friedreich ataxia phenotype. Neurogenetics 12, 307–313 (2011). https://doi.org/10.1007/s10048-011-0296-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-011-0296-3

Keywords

Navigation