Elsevier

Molecules and Cells

Volume 27, Issue 5, May 2009, Pages 601-608
Molecules and Cells

minireview
Heterologous Production of Paromamine in Streptomyces lividans TK24 Using Kanamycin Biosynthetic Genes from Streptomyces kanamyceticus ATCC12853

https://doi.org/10.1007/s10059-009-0080-5Get rights and content
Under a Creative Commons license
open access

The 2-deoxystreptamine and paromamine are two key intermediates in kanamycin biosynthesis. In the present study, pSK-2 and pSK-7 recombinant plasmids were constructed with two combinations of genes: kanABK, and kanABKF and kacA respectively from kanamycin producer Streptomyces kanamyceticus ATCC12853. These plasmids were heterologously expressed into Streptomyces lividans TK24 independently and generated two recombinant strains named S. lividans Sk-2/SL and S. lividans SK-7/SL, respectively. ESI/ MS and ESI-LC/MS analysis of the metabolite from S. lividans SK-2/SL showed that the compound had a molecular mass of 163 [M + H]+, which corresponds to that of 2-deoxystreptamine. ESI/MS and MS/MS analysis of metabolites from S. lividans SK-7/SL demonstrated the production of paromamine with a molecular mass of 324 [M + H]+. In this study, we report the production of paromamine in a heterologous host for the first time. This study will evoke to explore complete biosynthetic pathways of kanamycin and related aminoglycoside antibiotics.

Keywords:

aminoglycosides
heterologous expression
kanamycin
paromamine
Streptomyces kanamyceticus heterologous host

Cited by (0)