Skip to main content
Log in

A field study on the application of distributed temperature sensing technology in thermal response tests for borehole heat exchangers

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Although the enhanced thermal response test (ETRT) method has been used to determine the distribution of ground temperatures and effective thermal conductivities, there are a number of obstacles which limit the wide application of this technology in the discipline of geoengineering. In this literature, four aspects of ETRT technology were investigated: (a) acquisition of ground temperature, (b) installation of the heat exchange tubes, (c) optimization of the monitoring positions, and (d) the difference in thermal conductivity obtained by the ETRT and numerical simulation. To investigate these issues, a field trial was carried out in Heze, Shandong Province, China, and the corresponding numerical models were built. The results demonstrate that: (i) the conventional methods that infer undisturbed ground temperature using water in tubes have large errors, whereas the distributed temperature sensing (DTS) technique enables the measurement of precise temperature profiles; (ii) the thermal conductivity measured using double U-tubes reflects the soil thermal property more accurately than that for a single U-tube; (iii) it is more reasonable to install optical fibers outside the U-tube sidewall than inside the observation tube; and (iv) it is essential to quantitatively consider various interface thermal impedance when estimating ground thermal conductivities using numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

Download references

Acknowledgements

The authors would like to thank all the participants of the experimental studies. The financial support provided by the National Natural Science Foundation of China (grant nos. 41230636, 41427801, and 41722209), Research Funds for the Central Universities (grant no. 020614380050), the Key Laboratory of Earth Fissures Geological Disaster, Ministry of Land and Resources, and Geological Survey of Jiangsu Province (grant no. 201401) are gratefully acknowledged. The first author is grateful for the scholarship provided by the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Shi or Hong-Hu Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, D., Shi, B., Zhu, HH. et al. A field study on the application of distributed temperature sensing technology in thermal response tests for borehole heat exchangers. Bull Eng Geol Environ 78, 3901–3915 (2019). https://doi.org/10.1007/s10064-018-1407-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-018-1407-2

Keywords

Navigation