Skip to main content

Advertisement

Log in

A ground instabilities inventory between Tetouan and Jebha (Morocco): mapping, description and analysis

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Ground instabilities inventories, regrouping the different existing instability typologies, are of primary importance for their comprehension and anticipation of further instabilities. Several methods can be used to prepare such an inventory, depending on the objective, the size of the study area, the availability of data, etc. To make an inventory of ground instabilities in the north-western Rif of Morocco, we chose to use only free software and free available data. We were thus able to provide one global inventory map presenting the different instabilities shown with colored dots and four smaller area inventory maps presenting the instabilities with surface features. An analysis of the maps highlights parameters that could be responsible for ground instabilities. The multi-methodological approaches we used for the realization of inventories give high-quality results and stresses the importance of risk assessment in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ait Brahim L, Bousta M, Jemmah I A, El Hamdouni I, El Mahsani A, Abdelouafi A, Sossey alaoui F, Lallout I (2018) Landslide susceptibility mapping using AHP method and GIS in the peninsula of Tangier (Rif-northern morocco). MATEC Web Conf, Volume 149. https://doi.org/10.1051/matecconf/201814902084

  • Al Karkouri J (2017) Les milieux montagneux marocains à l’épreuve du changement climatique (cas de la montagne rifaine). Hespéris-Tamuda 52(1):237–267

    Google Scholar 

  • Andrieux J (1971) La structure du Rif central. Etude des relations entre la tectonique de compression et les nappes de glissement dans un tronçon de la chaîne alpine. Notes Et Mémoires Du Service Géologique Du Maroc 235:1–450

    Google Scholar 

  • Ardizzone F, Cardinali M, Galli M, Guzzetti F, Reichenbach P (2007) Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne LiDAR. Nat Hazard 7(6):637–650

    Article  Google Scholar 

  • Bischoff CA, Ferreti A, Novali F, Uttini A, Giannico C, Meloni F (2020) Nationwide deformation monitoring with SqueeSAR using Sentinel-1 data. Proc Int Assoc Hydrol Sci 382:31–37. https://doi.org/10.5194/piahs-382-31-2020

    Article  Google Scholar 

  • Brabb EE (1991) The world landslide problem. J Int Geo 14(1):52–61. https://doi.org/10.18814/epiiugs/1991/v14i1/008

  • Brunsden D (1985) Landslide types, mechanisms, recognition, identification. In: Morgan CS (ed) Landslides in the South Wales Coalfield, Proceedings Symposium. The Polytechnic of Wales, pp 19–28

  • Brunsden D (1993) Mass movements; the research frontier and beyond: a geomorphological approach. Geomorphology 7:85–128

    Article  Google Scholar 

  • Cascini L, Fornaro G, Peduto D (2010) Advanced low-and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales. Eng Geol 112:29–42

    Article  Google Scholar 

  • Chacón J, Irigaray C, Fernández T, El Hamdouni R (2006) Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65:341–411. https://doi.org/10.1007/s10064-006-0064-z

    Article  Google Scholar 

  • Chalouan A, Galindo-Zaldivar J, Akil M, Marin C, Chabli A, Ruano P, Bargach K, De Galdeano CS, Benmakhlouf M, Ahmamou M, Gourari L (2006) Tectonic wedge escape in the southwestern front of the Rif Cordillera (Morocco). In: Moratti G, Chalouan A (eds) Tectonics of the Western Mediterranean and North Africa. Geological Soc Publishing House, Bath, pp 101–118

    Google Scholar 

  • Chalouan A, Michard A (2004) The Alpine Rif Belt (Morocco): a case of mountain building in a subduction-subduction-transform fault triple junction. Pure Appl Geophys 16:489–519

    Article  Google Scholar 

  • Chanut MA, Gasc-Barbier M, Dubois L, Carotte A (2021) Automatic identification of continuous or non-continuous evolution of landslides and quantification of deformations. Landslides 18:3101–3118. https://doi.org/10.1007/s10346-021-01709-2

    Article  Google Scholar 

  • Chigira M, Duan F, Yagi H, Furuya T (2004) Using an airborne laser scanner for the identification of shallow landslides and susceptibility assessment in an area of ignimbrite overlain by permeable pyroclastics. Landslides 1:203–209. https://doi.org/10.1007/s10346-004-0029-x

    Article  Google Scholar 

  • Chowdhury R, Flentje P (2003) Role of slope reliability analysis in landslide risk management. Bull Eng Geol Environ 62:41–46. https://doi.org/10.1007/s10064-002-0166-1

    Article  Google Scholar 

  • Damm B, Klose M (2015) The landslide database for Germany: closing the gap at national level. Geomorphology 249:82–93. https://doi.org/10.1016/j.geomorph.2015.03.021

    Article  Google Scholar 

  • Dugonjic S, Arbanas Z, Benac C (2008) Assessment of landslide hazard on flysch slopes. In: proceedings of the 5th conference of Slovenian geotechnical society, 12–14. Nova Gorica, Slovenia, pp 263 – 272

  • El Fahchouch NA, Ait Brahim L, Raji O, Khouakhi A (2015) Apport du SIG et de la télédétection dans la modélisation spatiale de la susceptibilité aux mouvements de terrain dans la région d’Al Hoceima, Rif Oriental. Maroc Afrique Science 11(2):44–57

    Google Scholar 

  • El Fellah B, Mastere M (2015) The central Rif Mediterranean coast: slope failures causative factors. Bulletin De L’institut Scientifique, Rabat, Section Sciences De La Terre 37:35–43

    Google Scholar 

  • Fan X, Scaringi G, Korup O, West AJ, Van Westen CJ, Tanyas H, Hovius N, Hales TC, Jibson RW, Allstadt KE et al (2019) Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts. Rev Geophys 57:421–503. https://doi.org/10.1029/2018RG000626

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2000) Non-linear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transaction on Geoscience and Remote Sensing 38:2202–2212

    Article  Google Scholar 

  • Fiorucci F, Cardinali M, Carlà R, Rossi M, Mondini AC, Santurri L, Ardizzone F, Guzzetti F (2011) Seasonal landslides mapping and estimation of landslide mobilization rates using aerial and satellite images. Geomorphology 129(1–2):59–70. https://doi.org/10.1016/j.geomorph.2011.01.013

    Article  Google Scholar 

  • Foster C, Pennington CVL, Culshaw MG, Lawrie K (2012) The national landslide database of Great Britain: development, evolution and applications. Environ Earth Sci 66:941–953. https://doi.org/10.1007/s12665-011-1304-5

    Article  Google Scholar 

  • Froude MJ, Petley DN (2018) Global fatal landslide occurrence from 2004 to 2016. Nat Hazard 18:2161–2181

    Article  Google Scholar 

  • Galli M, Ardizzone F, Cardinali M, Guzzetti F, Reichenbach P (2008) Comparing landslide inventory maps. Geomorphology 94:268–289.https://doi.org/10.1016/j.geomorph.2006.09.023

  • Gao J, Maroa J (2010) Topographic controls on evolution of shallow landslides in pastoral Wairarapa, New Zealand, 1979–2003. Geomorphology 114(3):373–381. https://doi.org/10.1016/j.geomorph.2009.08.002

    Article  Google Scholar 

  • Gasc-Barbier M, Ballion A, Virely D (2008) Design of large cuttings in jointed rock. Bull Eng Geol Environ 67:227–235. https://doi.org/10.1007/s10064-008-0127-4

    Article  Google Scholar 

  • Gasc-Barbier M, Barra A, Buxó P, Trapero L, Crosetto M, Colell X, Fabregat I, Echeverria A, Marturia J (2021) Monitoring deformations related to geological risks with InSaR data – the MOMPA project. IOP Conf Ser: Earth Environ Sci 833:012142. https://doi.org/10.1088/1755-1315/833/1/012142

  • Guzzetti F, Cardinali M, Reichenbach P, Carrara A (2000) Comparing landslide maps: a case study in the upper Tiber River Basin. Central Italy Environmental Management 25(3):247–363

    Google Scholar 

  • Guzzetti F, Galli M, Reichenbach P, Ardizzone F, Cardinali M (2006) Landslide hazard assessment in the Collazzone area, Umbria, central Italy. Nat Hazard 6:115–131

    Article  Google Scholar 

  • Guzzetti F, Manunta M, Ardizzone F, Pepe A, Cardinali M, Zeni G, Reichenbach P, Lanari R (2009) Analysis of ground deformation detected using the SBASS-DInSAR technique in Umbria, Central Italy. Pure Appl Geophys 166:1425–1459. https://doi.org/10.1007/s00024-009-0491-4

    Article  Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66. https://doi.org/10.1016/j.earscirev.2012.02.001

    Article  Google Scholar 

  • Haneberg WC, Cole WF, Kasali G (2009) High-resolution lidar-based landslide hazard mapping and modeling, UCSF Parnassus Campus; San Francisco, USA. Bull Eng Geol Env 68:263–276. https://doi.org/10.1007/s10064-009-0204-3

    Article  Google Scholar 

  • Hansen MJ (1984) Strategies for classification of landslides. In: Brunsden D, Prior DB (eds) Slope Instability. John Wiley and Sons, pp 1–25

    Google Scholar 

  • Hao L, Rajaneesh A, Van Westen CJ, Sajinkumar KS, Martha TR, Jaiswal P, McAdoo BG (2020) Constructing a complete landslide inventory dataset for the 2018 monsoon disaster in Kerala, India, for land use change analysis. Earth Syst Sci Data 12:2899–2918. https://doi.org/10.5194/essd-12-2899-2020

    Article  Google Scholar 

  • HCP (2015) Le Maroc en chiffres. https://hcp.ma/downloads/Maroc-en-chiffres_t13053.html. Accessed 20 July 2022

  • Ivčević A, Bertoldo R, Mazurek H, Siame L, Guignard S, Ben Moussa A, Bellier O (2020) Local risk awareness and precautionary behaviour in a multi-hazard region of North Morocco. Int J Disast Risk Re 50:101724. https://doi.org/10.1016/j.ijdrr.2020.101724

  • Kirschbaum D, Stanley T, Zhoua Y (2015) Spatial and temporal analysis of a global landslide catalog. Geomorphology 249:4–15. https://doi.org/10.1016/j.geomorph.2015.03.016

    Article  Google Scholar 

  • Kornprobst J (1974) Contribution à l’étude pétrographique et structurale de la zone interne du Rif (Maroc septentrional). Notes et Mémoires du Service géologique du Maroc, 256 p

  • Liu C, Li W, Wu H, Lu P, Sang K, Sun W, Chen W, Hong Y, Li R (2013) Susceptibility evaluation and mapping of China’s landslides based on multi-source data. Nat Hazards 69:1477–1495. https://doi.org/10.1007/s11069-013-0759-y

    Article  Google Scholar 

  • Lu P, Stumpf A, Kerle N, Casagli N (2011) Object-oriented change detection for landslide rapid mapping. IEEE Geosci Remote Sens Lett 8(4):701–705

    Article  Google Scholar 

  • Mahé S, Gasc-Barbier M, Soliva R (2014) Joint set intensity estimation: comparison between investigation modes. Bull Eng Geol Environ 74:171–180. https://doi.org/10.1007/s10064-014-0572-1

    Article  Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Proc Land 29(6):687–711

    Article  Google Scholar 

  • Martha TR, Kerle N, Jetten V, Van Westen CJ, Vinod Kumar K (2010) Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 116:24–36

    Article  Google Scholar 

  • Martins-Campina B (2005) Le rôle des facteurs géologiques et mécaniques dans le déclenchement des instabilités gravitaires : exemple de deux glissements de terrain des Pyrénées Atlantique (Vallée d’Ossau et Vallée d’Aspe). Doctoral thesis. Université Bordeaux 1, 47 p

  • Mastere M (2011) La susceptibilité aux mouvements de terrain dans la province de Chefchaouen: Thèse de Doctorat, Université de Bretagne Occidentale, 93 p

  • Mastere M, El Fellah B, Maquaire O (2020) Landslides inventory map as a first step for hazard and risk assessment: Rif mountains, Morocco. Bulletin De L’institut Scientifique, Rabat, Section Sciences De La Terre 42:49–62

    Google Scholar 

  • Meusburger K, Alewell C (2008) Impacts of anthropogenic and environmental factors on the occurrence of shallow landslides in an alpine catchment (Userven Valley, Switzerland). Nat Hazards Earth Sci 8:509–520. https://doi.org/10.5194/nhess-8-509-2008

    Article  Google Scholar 

  • Michard A, Chalouan A, Feinberg H, Goffé B, Montigny R (2002) How does the Alpine belt end between Spain and Morocco? Bulletin De La Société Géologique De France 173:3–15

    Article  Google Scholar 

  • Michard A, Negro F, Saddiqi O, Bouybaouene ML, Chalouan A, Montigny R, Goffé B (2006) Pressure–temperature–time constraints on the Maghrebide mountain building: evidence from the Rif-Betic transect (Morocco, Spain), Algerian correlations, and geodynamic implications. CR Geosci 338:92–114

    Article  Google Scholar 

  • Moine M, Puissant A, Malet JP (2009) Detection of landslides from aerial and satellite images with a semi-automatic method. Application to the Barcelonnette basin (Alpes-de-Haute-Provence, France). In: Malet JP, Remaitre A, Bogaard T (eds) Landslide Processes: From Geomorphological Mapping to Dynamic Modelling. CERG, Strasbourg, France, pp 63–68

  • Molenaar H (2005) Automatic recognition of geomorphological features. A process-based approach for the classification of landslides using remote-sensing data sources. Doctoral thesis, IBED-Physical Geography, Section Computational Bio and Physical Geography. Universiteit van Amsterdam, 31 p

  • Nguyen AT, Merrien-Soukatchoff V, Vinches M, Gasc-Barbier M (2016) Grouping discontinuities in representative sets: influence on the stability analysis of slope cuts. Bull Eng Geol Environ 75:1429–1444. https://doi.org/10.1007/s10064-015-0822-x

    Article  Google Scholar 

  • Passalacqua P, Tarolli P, Foufoula-Georgiou E (2010) Testing space-scale methodologies for automatic geomorphic feature extraction from Lidar in a complex mountainous landscape. Water Resour Res 46(11):W11535. https://doi.org/10.1029/2009WR008812

    Article  Google Scholar 

  • Pateau M (2014) De l’aléa au risque naturel : cas de la région Tanger-Tétouan (Rif, Maroc). Geo-Eco-Trop 38(1):23–32

    Google Scholar 

  • Petley D (2012) Global patterns of loss of life from landslides. Geology 40(10):927–930. https://doi.org/10.1130/G33217.1

    Article  Google Scholar 

  • Sato HP, Harp EL (2009) Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China, using satellite imagery and Google Earth. Landslides 6:153–159. https://doi.org/10.1007/s10346-009-0147-6

    Article  Google Scholar 

  • Sekiguchi T, Sato HP (2004) Mapping of micro topography using airborne laser scanning. Landslides 1:195–202

    Article  Google Scholar 

  • Taylor FE, Malamud BD, Freeborough K, Demeritt D (2015) Enriching Great Britain Landslide Database by searching newspaper archives. Geomorphology 249:52–68. https://doi.org/10.1016/j.geomorph.2015.05.019

    Article  Google Scholar 

  • Tribak H, Belkacem A, El Garouani A, Lahrach A (2020) Etude géotechnique des sols compressibles : caractérisation, mécanisme et recommandation (cas des régions de Berrechid et Kenitra, Maroc). Eur Sci J 16(9):321–336. https://doi.org/10.19044/esj.2020.v16n9p321

  • Tribak H, Gasc-Barbier M, El Garouani A (2022) Assessment of ground instabilities’ causative factors using multivariate statistical analysis methods: case of the coastal region of northwestern Rif. Morocco Geosciences 12(10):383. https://doi.org/10.3390/geosciences12100383

    Article  Google Scholar 

  • UNISDR (2021) DesInventar Disaster Information Management System, Version 9.5.12- 2011. The United Nations Office for Disaster Risk Reduction, Geneva, Switzerland. http://www.desinventar.net/index.html. Accessed 20 July 2022

  • Valdivielso f, Laheurte P, Sabatier D, Perrot X, Virely D (2018) Analyse géomorphologique et structurale de MNT obtenus par Lidar aérien sur des grands glissements. Journées Nationales de Géotechnique et de Géologie de l’Ingénieur - Champs-sur-Marne. https://www.ifsttar.fr/collections/ActesInteractifs/AII3/pdfs/167631.pdf. Accessed 15 July 2022

  • Van Asselen S, Seijmonsbergen AC (2006) Expert-driven semi-automated geomorphological mapping for a mountainous area using a laser DTM. Geomorphology 78:309–320

    Article  Google Scholar 

  • Van Den Eeckhaut M, Hervás J (2012) State of the art of national landslide databases in Europe and their potential for assessing landslide susceptibility, hazard and risk. Geomorphology 139–140:545–558. https://doi.org/10.1016/j.geomorph.2011.12.006

    Article  Google Scholar 

  • Van Den Eeckhaut M, Poesen J, Verstraeten G, Vanacker V, Moeyersons J, Nyssen J, Van Beek LPH, Vandekerckhove L (2007) Use of LIDAR-derived images for mapping old landslides under forest. Earth Surf Proc Land 32:754–769. https://doi.org/10.1002/esp.1417

    Article  Google Scholar 

  • Van Westen CJ, Castellanos Abella EA, Sekhar LK (2008) Spatial data for landslide susceptibility, hazards and vulnerability assessment: an overview. Eng Geol 102:112–131. https://doi.org/10.1016/j.enggeo.2008.03.010

    Article  Google Scholar 

  • Van Westen CJ, Van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation — why is it still so difficult? Bull Eng Geol Env 65:167–184. https://doi.org/10.1007/s10064-005-0023-0

    Article  Google Scholar 

  • Varnes DJ (1984) Landslide hazard zonation. Review of principles and practice. IAEG Commission on Landslides. UNESCO, Paris, 63 p

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haytam Tribak.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tribak, H., Gasc-Barbier, M. & Garouani, A.E. A ground instabilities inventory between Tetouan and Jebha (Morocco): mapping, description and analysis. Bull Eng Geol Environ 82, 143 (2023). https://doi.org/10.1007/s10064-023-03161-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10064-023-03161-z

Keywords

Navigation