Skip to main content
Log in

Pathogenic characteristics of Pseudomonas aeruginosa bacteraemia isolates in a high-endemicity setting for ST175 and ST235 high-risk clones

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Multidrug-resistant (MDR) Pseudomonas aeruginosa represents a major clinical concern. The interplay between antimicrobial resistance and virulence of P. aeruginosa was investigated in in vitro and in vivo studies. Thirty-eight well-characterized (21 MDR and 17 non-MDR) P. aeruginosa strains from patients with bacteraemia were analysed. Resistance phenotype, carbapenemase production, clonal relatedness, type III secretion system genotype, O-antigen serotype, cytotoxicity (ability to lyse cells) on A549 cells, and virulence (lethality in nematodes) in a Caenorhabditis elegans model were investigated. MDR strains showed lower cytotoxicity (35.4 ± 21.30% vs. 45.0 ± 18.78 %; P = 0.044) and virulence (66.7% vs. 100%; P = 0.011) than non-MDR strains. However, the pathogenicity of MDR high-risk clones varied broadly, with ST235 and ST175 clones being the most and least cytotoxic (51.8 ± 10.59% vs. 11.0 ± 1.25%; P < 0.0001) and virulent ([100% vs. 73.1; P = 0.075] and [0% vs. 93.9%; P < 0.0001], respectively). The pathogenicity of the ST235 clone was similar to that of non-MDR strains, and its ability to lyse cells and high virulence were related with the exoU-positive genotype. Furthermore, the O11 serotype was more frequent among the ST235 clone and exoU-positive genotype strains and was also essential for the pathogenicity of P. aeruginosa. Our data suggest that the pathogenicity of MDR high-risk clones is the result not only of the resistance phenotype but also of the virulence genotype. These findings have implications for the clinical management of patients and infection control programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kang CI, Kim SH, Kim HB, Park SW, Choe YJ, Oh MD et al (2003) Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis 37(6):745–751

    Article  Google Scholar 

  2. Thaden JT, Park LP, Maskarinec SA, Ruffin F, Fowler VG, van Duin D (2017) Results from a 13-year prospective cohort study show increased mortality caused by Pseudomonas aeruginosa compared to other bacteria. Antimicrob Agents Chemother 61(6):1–11

    Article  Google Scholar 

  3. Kang C, Kim S, Park WB, Kim H, Kim E, Oh M et al (2005) Bloodstream infections caused by antibiotic-resistant gram-negative bacilli : risk factors for mortality and impact of inappropriate initial antimicrobial therapy on outcome. antimicrob agents chemother 2005;49 (2):760–6.

  4. Tam VH, Rogers CA, Chang KT, Weston JS, Caeiro JP, Garey KW (2010) Impact of multidrug-resistant Pseudomonas aeruginosa bacteremia on patient outcomes. Antimicrob Agents Chemother 54(9):3717–3722

    Article  CAS  Google Scholar 

  5. Suárez C, Peña C, Gavaldà L, Tubau F, Manzur A, Dominguez MA et al (2010) Influence of carbapenem resistance on mortality and the dynamics of mortality in Pseudomonas aeruginosa bloodstream infection. Int J Infect Dis 14(3):73–78

    Article  Google Scholar 

  6. Joo E-J, Kang C-I, Ha YE, Kang S-J, Park SY, Chung DR et al (2011) Risk factors for mortality in patients with Pseudomonas aeruginosa bacteremia: clinical impact of antimicrobial resistance on outcome. Microb Drug Resist 17(2):305–312

    Article  Google Scholar 

  7. Peña C, Suarez C, Gozalo M, Murillas J, Almirante B, Pomar V et al (2012) Prospective multicenter study of the impact of carbapenem resistance on mortality in Pseudomonas aeruginosa bloodstream infections. Antimicrob Agents Chemother 56(3):1265–1272

    Article  Google Scholar 

  8. Livermore DM (2009) Has the era of untreatable infections arrived? J Antimicrob Chemother 64 (suppl_1):29-36.

  9. Mesaros N, Nordmann P, Plésiat P, Roussel-Delvallez M, Van Eldere J, Glupczynski Y et al (2007) Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clin Microbiol Infect 13(6):560–578

    Article  CAS  Google Scholar 

  10. Del Barrio-Tofiño E, López-Causapé C, Cabot G, Rivera A, Benito N, Segura C et al (2017) Genomics and susceptibility profiles of extensively drug-resistant Pseudomonas aeruginosa isolates from Spain. Antimicrob Agents Chemother 61(11):e01589–e01517

    PubMed  PubMed Central  Google Scholar 

  11. Oliver A, Mulet X, López-Causapé C, Juan C (2015) The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat 21–22:41–59

    Article  Google Scholar 

  12. Cabot G, Ocampo-Sosa AA, Domínguez MA, Gago JF, Juan C, Tubau F et al (2012) Genetic markers of widespread extensively drug-resistant Pseudomonas aeruginosa high-risk clones. Antimicrob Agents Chemother 56(12):6349–6357

    Article  CAS  Google Scholar 

  13. Mulet X, Cabot G, Ocampo-Sosa AA, Domínguez MA, Zamorano L, Juan C et al (2013) Biological markers of Pseudomonas aeruginosa epidemic high-risk clones. Antimicrob Agents Chemother 57(11):5527–5535

    Article  CAS  Google Scholar 

  14. Treepong P, Kos VN, Guyeux C, Blanc DS, Bertrand X, Valot B et al (2018) Global emergence of the widespread Pseudomonas aeruginosa ST235 clone. Clin Microbiol Infect 24(3):258–260

    Article  CAS  Google Scholar 

  15. Hauser AR (2009) The Type III Secretion System of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 7(9):654–665

    Article  CAS  Google Scholar 

  16. Lu Q, Eggimann P, Luyt C-E, Wolff M, Tamm M, François B et al (2014) Pseudomonas aeruginosa serotypes in nosocomial pneumonia: prevalence and clinical outcomes. Crit Care 18(1):R17

    Article  Google Scholar 

  17. El-Solh AA, Hattemer A, Hauser AR, Alhajhusain A, Vora H (2012) Clinical outcomes of type III Pseudomonas aeruginosa bacteremia. Crit Care Med 40(4):1157–1163

    Article  Google Scholar 

  18. Peña C, Cabot G, Gómez-Zorrilla S, Zamorano L, Ocampo-Sosa A, Murillas J et al (2015) Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections. Clin Infect Dis 60(4):539–548

    Article  Google Scholar 

  19. Recio R, Villa J, Viedma E, Orellana MÁ, Lora-Tamayo J, Chaves F (2018) Bacteraemia due to extensively drug-resistant Pseudomonas aeruginosa sequence type 235 high-risk clone: facing the perfect storm. Int J Antimicrob Agents 52(2):172–179

    Article  CAS  Google Scholar 

  20. Gómez-Zorrilla S, Juan C, Cabot G, Camoez M, Tubau F, Oliver A et al (2016) Impact of multidrug resistance on the pathogenicity of Pseudomonas aeruginosa: in vitro and in vivo studies. Int J Antimicrob Agents 47(5):368–374

    Article  Google Scholar 

  21. Abdelraouf K, Kabbara S, Ledesma KR, Poole K, Tam VH (2011) Effect of multidrug resistance-conferring mutations on the fitness and virulence of Pseudomonas aeruginosa. J Antimicrob Chemother 66(6):1311–1317

    Article  CAS  Google Scholar 

  22. Andersson DI, Hughes D (2010) Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8(4):260–271

    Article  CAS  Google Scholar 

  23. Zur Wiesch PS, Engelstädter J, Bonhoeffer S (2010) Compensation of fitness costs and reversibility of antibiotic resistance mutations. Antimicrob Agents Chemother 54(5):2085–2095

    Article  Google Scholar 

  24. Recio R, Villa J, Viedma E, Orellana MA, Lora-Tamayo J, Chaves F (2018) El genotipo de virulencia exoU como predictor de mortalidad en bacteriemia por Pseudomonas aeruginosa. In: XXII Congreso de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica, Bilbao, España, 2018. Abstract 0089. Enferm Infecc Microbiol Clin 36 Supl C1:54.

  25. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281

    Article  CAS  Google Scholar 

  26. The European Committee on Antimicrobial Susceptibility Testing (2018) Breakpoint tables for interpretation of MICs and zone diameters, version 8.1. Available:http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_5.0_Breakpoint_Table_01.pdf.

  27. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH et al (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33(9):2233–2239

    Article  CAS  Google Scholar 

  28. Curran B, Jonas D, Grundmann H, Pitt T, Dowson CG (2004) Development of a multilocus sequence typing scheme for the opportunistic pathogen pseudomonas aeruginosa development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J Clin Microbiol 42(12):5644–5649

    Article  CAS  Google Scholar 

  29. Feltman H, Jain M, Peterson L, Schulert G, Khan S, Hauser AR (2001) Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiology 147:2659–2669

    Article  CAS  Google Scholar 

  30. Liu PV, Wang S (1990) Three new major somatic antigens of Pseudomonas aeruginosa. J Clin Microbiol 28(5):922–925

    Article  CAS  Google Scholar 

  31. Pérez-Gallego M, Torrens G, Castillo-Vera J, Moya B, Zamorano L, Cabot G et al (2016) Impact of AmpC derepression on fitness and virulence: the mechanism or the pathway? MBio 7(5):01783–01716

    Article  Google Scholar 

  32. Sánchez-Diener I, Zamorano L, López-Causapé C, Cabot G, Mulet X, Peña C et al (2017) Interplay among resistance profiles, high-risk clones, and virulence in the Caenorhabditis elegans Pseudomonas aeruginosa infection model. Antimicrob Agents Chemother 61(12):e01586–e01517

    Article  Google Scholar 

  33. Cabot G, Zamorano L, Moyà B, Juan C, Navas A, Blázquez J et al (2016) Evolution of Pseudomonas aeruginosa antimicrobial resistance and fitness under low and high mutation rates. Antimicrob Agents Chemother 60(3):1767–1778

    Article  CAS  Google Scholar 

  34. Viedma E, Juan C, Acosta J, Zamorano L, Otero JR, Sanz F et al (2009) Nosocomial spread of colistin-only-sensitive sequence type 235 Pseudomonas aeruginosa isolates producing the extended-spectrum β-lactamases GES-1 and GES-5 in Spain. Antimicrob Agents Chemother 53(11):4930–4933

    Article  CAS  Google Scholar 

  35. Viedma E, Juan C, Villa J, Barrado L, Ángeles Orellana M, Sanz F et al (2012) VIM-2-producing multidrug-resistant Pseudomonas aeruginosa ST175 clone, Spain. Emerg Infect Dis 18(8):1235–1241

    Article  Google Scholar 

  36. Miyoshi-Akiyama T, Tada T, Ohmagari N, Viet Hung N, Tharavichitkul P, Pokhrel BM et al (2017) Emergence and spread of epidemic multidrug-resistant Pseudomonas aeruginosa. Genome Biol Evol 9(12):3238–3245

    Article  CAS  Google Scholar 

  37. Howell HA, Logan LK, Hauser AR (2013) Type III secretion of ExoU is critical during early Pseudomonas aeruginosa pneumonia. MBio 4(2):e00032–e00013

    Article  Google Scholar 

  38. Faure K, Shimabukuro D, Ajayi T, Allmond LR, Sawa T, Wiener-Kronish JP (2003) O-antigen serotypes and type III secretory toxins in clinical isolates of Pseudomonas aeruginosa. J Clin Microbiol 41(5):2158–2160

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to María Dolores Folgueira and Fátima Lasala (Department of Clinical Microbiology, Hospital Universitario 12 de Octubre, Madrid, Spain) for their guidance on performing the cytotoxicity assay. We are also grateful to Janet Dawson for revising the English manuscript.

Funding

This work was supported by Plan Nacional de I+ D+ i 2013–2016, Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Economía, Industria y Competitividad, Spanish Network for Research in Infectious Diseases (REIPI RD16/0016) and cofinanced by European Development Regional Fund “A way to achieve Europe”. Esther Viedma was also supported by “Juan Rodés” fellowship grant (Instituto de Salud Carlos III). Raúl Recio received a SEIMC (Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica) mobility fellowship to support his work in the microbiology laboratory (IdISBa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Recio.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Research Ethics Committee of our centre (Health Research Institute, Hospital Universitario 12 de Octubre, Madrid, Spain) [ref. TP17/0041].

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 24 kb)

Fig. S1.

A549 cytotoxicity results after 3 hours of infection (MOI = 100) of P. aeruginosa strains. PAO1 and PA14 strains are included for comparative purposes. Values are means ± SD for at least three wells from three independent plates (DOCX 33 kb)

Fig. S2.

A549 cytotoxicity results after 3 hours of infection (MOI = 100) of P. aeruginosa strains according to MLST genotype: ST235 (black tone), ST175 (grey tone) and other STs (white tone). PAO1 and PA14 strains are included for comparative purposes. Values are means ± SD for at least three wells from three independent plates (DOCX 56 kb)

Fig. S3.

A549 cytotoxicity results after 3 hours of infection (MOI = 100) of P. aeruginosa strains according to TTSS genotype: exoU+/exoS˗ (black tone), exoS+/exoU˗ (grey tone) and exoU˗/exoS˗ (white tone). PAO1 and PA14 strains are included for comparative purposes. Values are means ± SD for at least three wells from three independent plates (DOCX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Recio, R., Sánchez-Diener, I., Viedma, E. et al. Pathogenic characteristics of Pseudomonas aeruginosa bacteraemia isolates in a high-endemicity setting for ST175 and ST235 high-risk clones. Eur J Clin Microbiol Infect Dis 39, 671–678 (2020). https://doi.org/10.1007/s10096-019-03780-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-019-03780-z

Keywords

Navigation