Skip to main content

Advertisement

Log in

Retort carbonization of bamboo (Bambusa vulgaris) waste for thermal energy recovery

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Production of biochar from bamboo (Bambusa vulgaris) is a potential route to recover thermal energy from biomass. This study presents a preliminary investigation into the thermochemical conversion of bamboo stalks to biochar as a means of recovering energy and material from the waste biomass. At a high temperature of 340 °C, a biochar yield of 38 wt% was obtained using a top-lit updraft reactor that uses a retort heating system. Typical characterization of the biochar showed the development of a highly porous structure with a surface area of 327 m2/g, indicating the biochars’ potential for nutrient recovery and pollutant removal. Thermo-gravimetric analysis reveals a gradual decomposition of the lignocellulosic content as the temperature increases. The significance of the study is in the production of high-quality biochar with desirable qualities using a low-cost self-regulating piece of equipment that is suitable for both remote and on-field application. We recommend the co-carbonization of the bamboo stalks with other sources for complete utilization of their potential.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

SEM:

Scanning electron microscopy

EDX:

Energy-dispersive X-ray spectroscopy

TGA:

Thermo-gravimetric analysis

DTA:

Differential thermal analysis

BET:

Brunauer–Emmett–Teller

BJH:

Barrett, Joyner, and Halenda

References

  • Abdulkareem S, Adeniyi A (2017) Production of particle boards using polystyrene and bamboo wastes. Niger J Technol 36(3):788–793

    Article  Google Scholar 

  • Adelodun AA, Adeniyi AG, Ighalo JO, Onifade DV, Arowoyele LT (2020) Thermochemical conversion of oil palm Fiber-LDPE hybrid waste into biochar. Biofuels, Bioprod Biorefin 14(6):1313–1323

    Article  CAS  Google Scholar 

  • Adeniyi A, Ighalo J, Onifade D, Popoola A (2020) Production of hybrid biochar by retort-heating of elephant grass (Pennisetum purpureum) and low density polyethylene (LDPE) for waste management and product development. J Mater Environ Sci 11(12):1940–1952

    CAS  Google Scholar 

  • Adeniyi AG, Abdulkareem SA, Ighalo JO, Onifade DV, Sanusi SK (2021a) Thermochemical co-conversion of sugarcane bagasse-LDPE hybrid waste into biochar. Arab J Sci Eng 46(7):6391–6397

    Article  CAS  Google Scholar 

  • Adeniyi AG, Ighalo JO, Onifade DV (2019) Production of biochar from elephant grass (Pernisetum purpureum) using an updraft biomass gasifier with retort heating. Biofuels

  • Adeniyi AG, Onifade DV, Ighalo O (2021b) Evaluating the nature of captured exhaust soot from a retort heating carbonisation system. Scientia Iranica

  • Adeniyi AG, Abdulkareem SA, Emenike EC, Abdulkareem MT, Iwuozor KO, Amoloye MA, Ahmed II, Awokunle OE (2022a) Development and characterization of microstructural and mechanical properties of hybrid polystyrene composites filled with kaolin and expanded polyethylene powder. Results Eng, 100423.

  • Adeniyi AG, Abdulkareem SA, Iwuozor KO, Abdulkareem MT, Adeyanju CA, Emenike EC, Ndagi M and Akande OJ (2022b). Mechanical and microstructural properties of expanded polyethylene powder/mica filled hybrid polystyrene composites. Mech Adv Mater Struct, 1–10.

  • Ahmed MB, Zhou JL, Ngo HH, Guo W (2016) Insight into biochar properties and its cost analysis. Biomass Bioenerg 84:76–86

    Article  CAS  Google Scholar 

  • Azam M, Jahromy SS, Raza W, Raza N, Lee SS, Kim K-H, Winter F (2020) Status, characterization, and potential utilization of municipal solid waste as renewable energy source: Lahore case study in Pakistan. Environ Int 134:105291

    Article  CAS  Google Scholar 

  • Bolan N, Hoang SA, Beiyuan J, Gupta S, Hou D, Karakoti A, Joseph S, Jung S, Kim KH, Kirkham MB, Kua HW (2021) Multifunctional applications of biochar beyond carbon storage. Int Mater Rev, 1–51

  • Borek K, Romaniuk W, Roman K, Roman M, Kuboń M (2021) The analysis of a prototype installation for biogas production from chosen agricultural substrates. Energies 14(8):2132

    Article  CAS  Google Scholar 

  • Borowski PF (2022) Management of energy enterprises in zero-emission conditions: bamboo as an innovative biomass for the production of green energy by power plants. Energies 15(5):1928

    Article  CAS  Google Scholar 

  • Borowski PF, Patuk I, Bandala ER (2022) Innovative industrial use of bamboo as key “Green” material. Sustainability 14(4):1955

    Article  CAS  Google Scholar 

  • Brodny J, Tutak M (2021) The comparative assessment of sustainable energy security in the Visegrad countries. A 10-year perspective. J Cleaner Prod 317:128427

    Article  Google Scholar 

  • Daniel E, Dim P, Okafor J (2021) Thermal and physicochemical characterization of biochar produced from waste bamboo. In: Proceeding of 1st Nigerian society of engineers minna branch engineering conference, 23rd-24th June, PTDF Hall, School of Infrastructure, Process Engineering and Technology, FUT, Minna, Nigeria

  • Darus SAAZM, Ghazali MJ, Azhari CH, Zulkifli R, Shamsuri AA, Sarac H, Mustafa MT (2020) Physicochemical and thermal properties of lignocellulosic fiber from Gigantochloa Scortechinii bamboo: Effect of steam explosion treatment. Fibers and Polymers 21(10):2186–2194

    Article  CAS  Google Scholar 

  • Emenike EC, Adeniyi AG, Omuku PE, Okwu KC, Iwuozor KO (2022) Recent advances in nano-adsorbents for the sequestration of copper from water. Journal of Water Process Engineering 47:102715

    Article  Google Scholar 

  • Emenike EC, Iwuozor KO, Anidiobi SU (2021) Heavy metal pollution in aquaculture: sources, impacts and mitigation techniques. Biol Trace Element Res, 1–17

  • Hao X, Wang Q, Wang Y, Han X, Yuan C, Cao Y, Lou Z, Li Y (2021) The effect of oil heat treatment on biological, mechanical and physical properties of bamboo. J Wood Sci 67(1):1–14

    Article  Google Scholar 

  • Hernandez-Mena LE, Pécoraa A, Beraldob AL (2014) Slow pyrolysis of bamboo biomass: analysis of biochar properties. Chem Eng 37:115–120

    Google Scholar 

  • Hou Y, Huang G, Li J, Yang Q, Huang S, Cai J (2019) Hydrothermal conversion of bamboo shoot shell to biochar: Preliminary studies of adsorption equilibrium and kinetics for rhodamine B removal. J Anal Appl Pyrol 143:104694

    Article  CAS  Google Scholar 

  • Hu Y, Hu F, Gan M, Xie Y, Feng Q (2021) A rapid, green method for the preparation of cellulosic self-reinforcing composites from wood and bamboo pulp. Ind Crops Prod 169:113658

    Article  CAS  Google Scholar 

  • Ighalo JO, Onifade DV, Adeniyi AG (2021b) Retort-heating carbonisation of almond (Terminalia catappa) leaves and LDPE waste for biochar production: evaluation of product quality. Int J Sustain Eng 14(5):1059–1067

    Article  Google Scholar 

  • Ighalo JO, Onifade DV, Adeniyi AG (2021a) Retort-heating carbonisation of almond (Terminalia catappa) leaves and LDPE waste for biochar production: evaluation of product quality. Int J Sustain Eng, 1–9

  • Ighalo JO, Rangabhashiyam S, Dulta K, Umeh CT, Iwuozor KO, Aniagor CO, Eshiemogie SO, Iwuchukwu FU, Igwegbe CA (2022). Recent advances in hydrochar application for the adsorptive removal of wastewater pollutants. Chem Eng Res Des

  • Irfan M, Zhao ZY, Panjwani MK, Mangi FH, Li H, Jan A, Ahmad M, Rehman A (2020) Assessing the energy dynamics of Pakistan: Prospects of biomass energy. Energy Rep 6:80–93

    Article  Google Scholar 

  • Iwuozor KO, Emenike EC, Abdulkadir M, Samuel O, Adeniyi AG (2022a) Effect of salt modification on biochar obtained from the thermochemical conversion of sugarcane bagasse. Sugar Tech, 1–11

  • Iwuozor KO, Emenike EC, Aniagor CO, Iwuchukwu FU, Ibitogbe EM, Temitayo OB, Omuku PE, Adeniyi AG (2022b) Removal of pollutants from aqueous media using cow dung-based adsorbents. Current Res Green Sustain Chem, 100300.

  • Iwuozor KO, Emenike EC, Ighalo JO, Eshiemogie S, Omuku PE, Adeniyi AG (2022c) Valorization of Sugar Industry’s By-products: A Perspective. Sugar Tech, 1–27.

  • Khuong DA, Nguyen HN, Tsubota T (2021) Activated carbon produced from bamboo and solid residue by CO2 activation utilized as CO2 adsorbents. Biomass Bioenerg 148:106039

    Article  Google Scholar 

  • Mahanim S, Asma IW, Rafidah J, Puad E, Shaharuddin H (2011) Production of activated carbon from industrial bamboo wastes. J Tropical Forest Sci, 417–424.

  • Maroušek J, Gavurová B (2022) Recovering phosphorous from biogas fermentation residues indicates promising economic results. Chemosphere 291:133008

    Article  Google Scholar 

  • Mera FAT, Xu C (2014) Plantation management and bamboo resource economics in China. Cienc Tecn 7(1):1–12

    Google Scholar 

  • Mohammadi A, Cowie AL, Cacho O, Kristiansen P, Mai TLA, Joseph S (2017) Biochar addition in rice farming systems: Economic and energy benefits. Energy 140:415–425

    Article  Google Scholar 

  • Mona S, Malyan SK, Saini N, Deepak B, Pugazhendhi A, Kumar SS (2021) Towards sustainable agriculture with carbon sequestration, and greenhouse gas mitigation using algal biochar. Chemosphere 275:129856

    Article  CAS  Google Scholar 

  • Muo I, Azeez AA (2019) Green entrepreneurship: literature review and agenda for future research. Int J Entrepren Knowl 7(2):17–29. https://doi.org/10.2478/ijek-2019-0007

    Article  Google Scholar 

  • Niessner R (2014) The many faces of soot: characterization of soot nanoparticles produced by engines. Angew Chem Int Ed 53(46):12366–12379

    CAS  Google Scholar 

  • Ogunlalu O, Oyekunle IP, Iwuozor KO, Aderibigbe AD, Emenike EC (2021) Trends in the mitigation of heavy metal ions from aqueous solutions using unmodified and chemically-modified agricultural waste adsorbents. Current Res Green Sustain Chem 4:100188

    Article  CAS  Google Scholar 

  • Olawale A, Ajayi O (2009) Thermal activation of Canarium Schweinfhurthi nutshell. Aust J Basic Appl Sci 3(4):3801–3807

    CAS  Google Scholar 

  • Park YK, Jung J, Ryu S, Lee HW, Siddiqui MZ, Jae J, Watanabe A, Kim YM (2019) Catalytic co-pyrolysis of yellow poplar wood and polyethylene terephthalate over two stage calcium oxide-ZSM-5. Appl Energy 250:1706–1718

    Article  CAS  Google Scholar 

  • Pattnaik D, Kumar S, Bhuyan S, Mishra S (2018) Effect of carbonization temperatures on biochar formation of bamboo leaves. In: Paper presented at the IOP conference series: materials science and engineering

  • Peças P, Carvalho H, Salman H, Leite M (2018) Natural fibre composites and their applications: a review. J Compos Sci 2(4):66

    Article  Google Scholar 

  • Ray P (2019) Renewable energy and sustainability. Clean Technol Environ Policy 21(8):1517–1533

    Article  Google Scholar 

  • Roy S, Kumar U, Bhattacharyya P (2019) Synthesis and characterization of exfoliated biochar from four agricultural feedstock. Environ Sci Pollut Res 26(7):7272–7276

    Article  CAS  Google Scholar 

  • Saliu O, Adeniyi A, Mamo M, Ndungu P, Ramontja J (2022). Microwave exfoliation of a biochar obtained from updraft retort carbonization for supercapacitor fabrication. Electrochem Commun, 107308

  • Sansaniwal S, Pal K, Rosen M, Tyagi S (2017) Recent advances in the development of biomass gasification technology: A comprehensive review. Renew Sustain Energy Rev 72:363–384

    Article  CAS  Google Scholar 

  • Schneider D, Escala M, Supawittayayothin K, Tippayawong N (2011) Characterization of biochar from hydrothermal carbonization of bamboo. Int J Energy Environ 2(4):647–652

    CAS  Google Scholar 

  • Shen Y, Wang J, Ge X, Chen M (2016) By-products recycling for syngas cleanup in biomass pyrolysis–An overview. Renew Sustain Energy Rev 59:1246–1268

    Article  CAS  Google Scholar 

  • Sileshi GW, Nath AJ (2017) Carbon farming with bamboos in Africa: A call for action

  • Stavkova J, Maroušek J (2021) Novel sorbent shows promising financial results on P recovery from sludge water. Chemosphere 276:130097

    Article  CAS  Google Scholar 

  • Tao S, Zhang C, Chen Y, Qin S, Qi H (2022) High strength holocellulose paper from bamboo as biodegradable packaging tape. Carbohyd Polym 283:119151

    Article  CAS  Google Scholar 

  • Wang RZ, Huang DL, Liu YG, Zhang C, Lai C, Wang X, Zeng GM, Gong XM, Duan A, Zhang Q, Xu P (2019) Recent advances in biochar-based catalysts: properties, applications and mechanisms for pollution remediation. Chem Eng J 371:380–403

    Article  CAS  Google Scholar 

  • Wei Y, Shen C, Xie J, Bu Q (2020) Study on reaction mechanism of superior bamboo biochar catalyst production by molten alkali carbonates pyrolysis and its application for cellulose hydrolysis. Sci Total Environ 712:136435

    Article  CAS  Google Scholar 

  • Widiastuti I, Solikhun M, Cahyo DN, Pratiwi YR, Juwantono H (2018) Treatment of bamboo fibres in improving mechanical performance of polymer composites–A review. In: Paper presented at the AIP conference proceedings

  • Xiao G, Ni M-J, Huang H, Chi Y, Xiao R, Zhong Z-P, Cen K-F (2007) Fluidized-bed pyrolysis of waste bamboo. J Zhejiang Univ –Sci A 8(9):1495–1499

    Article  CAS  Google Scholar 

  • Yoder J, Galinato S, Granatstein D, Garcia-Pérez M (2011) Economic tradeoff between biochar and bio-oil production via pyrolysis. Biomass Bioenerg 35(5):1851–1862

    Article  CAS  Google Scholar 

Download references

Funding

There was no external funding for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adewale George Adeniyi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Human and animal participants

This article does not contain any studies involving human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeniyi, A.G., Adeyanju, C.A., Iwuozor, K.O. et al. Retort carbonization of bamboo (Bambusa vulgaris) waste for thermal energy recovery. Clean Techn Environ Policy 25, 937–947 (2023). https://doi.org/10.1007/s10098-022-02415-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-022-02415-w

Keywords

Navigation