Skip to main content
Log in

Bounding the gap between the McCormick relaxation and the convex hull for bilinear functions

  • Short Communication
  • Published:
Mathematical Programming Submit manuscript

Abstract

We investigate how well the graph of a bilinear function \(b{:}\;[0,1]^n\rightarrow \mathbb {R}\) can be approximated by its McCormick relaxation. In particular, we are interested in the smallest number c such that the difference between the concave upper bounding and convex lower bounding functions obtained from the McCormick relaxation approach is at most c times the difference between the concave and convex envelopes. Answering a question of Luedtke, Namazifar and Linderoth, we show that this factor c cannot be bounded by a constant independent of n. More precisely, we show that for a random bilinear function b we have asymptotically almost surely \(c\geqslant \sqrt{n}/4\). On the other hand, we prove that \(c\leqslant 600\sqrt{n}\), which improves the linear upper bound proved by Luedtke, Namazifar and Linderoth. In addition, we present an alternative proof for a result of Misener, Smadbeck and Floudas characterizing functions b for which the McCormick relaxation is equal to the convex hull.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8(2), 273–286 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bollobás, B., Scott, A.D.: Discrepancy in graphs and hypergraphs. In: Györy, E., Katona, G.O.H., Lovász, L. (eds.) Bolyai Society Mathematical Studies, pp. 33–56. Springer, Berlin (2006)

  4. Chazelle, B.: The Discrepancy Method. Randomness and Complexity. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  5. Crama, Y.: Concave extensions for nonlinear \(0-1\) maximization problems. Math. Program. 61(1–3), 53–60 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Erdős, P., Spencer, J.: Imbalances in k-colorations. Networks 1(4), 379–385 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  7. Erdős, P., Goldberg, M., Pach, J., Spencer, J.: Cutting a graph into two dissimilar halves. J. Graph Theory 12(1), 121–131 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Haagerup, U.: The best constants in the Khintchine inequality. Stud. Math. 70(3), 231–283 (1981)

    MathSciNet  MATH  Google Scholar 

  9. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 3rd edn. Springer, Berlin (2013)

    MATH  Google Scholar 

  10. Luedtke, J., Namazifar, M., Linderoth, J.: Some results on the strength of relaxations of multilinear functions. Math. Program. 136(2), 325–351 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part I—Convex underestimating problems. Math. Program. 10(1), 147–175 (1976)

    Article  MATH  Google Scholar 

  12. Misener, R., Smadbeck, J.B., Floudas, C.A.: Dynamically generated cutting planes for mixed-integer quadratically constrained quadratic programs and their incorporation into GloMIQO 2. Optim. Methods Softw. 30(1), 215–249 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nazarov, F.L., Podkorytov, A.N.: Ball, Haagerup, and distribution functions. In: Havin, V.P., Nikolski, N.K. (eds.) Complex Analysis, Operators, and Related Topics, pp. 247–267. Springer, Berlin (2000)

  14. Nikolov, A.: Combinatorial discrepancy of the system of all cuts. Theoretical Computer Science Stack Exchange. http://cstheory.stackexchange.com/q/32072cstheory.stackexchange.com/q/32072 (version: July 26, 2015)

  15. Rikun, A.D.: A convex envelope formula for multilinear functions. J. Glob. Optim. 10(4), 425–437 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sahinidis, N.V.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8(2), 201–205 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sherali, H.D.: Convex envelopes of multilinear functions over a unit hypercube and over special discrete sets. Acta Math. Vietnam. 22(1), 245–270 (1997)

    MathSciNet  MATH  Google Scholar 

  18. Smith, E., Pantelides, C.: A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 23(4–5), 457–478 (1999)

    Article  Google Scholar 

  19. Tawarmalani, M., Richard, J.-P., Xiong, C.: Explicit convex and concave envelopes through polyhedral subdivisions. Math. Program. 138, 531–577 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the ARC Linkage Grant no. LP110200524, Hunter Valley Coal Chain Coordinator (hvccc.com.au) and Triple Point Technology (tpt.com).

We thank Jeff Linderoth and James Luedtke for fruitful discussions of the topics presented in this paper, both during a visit of Jeff Linderoth to Newcastle, Australia, and at the 22nd ISMP in Pittsburgh. We also thank Aleksandar Nikolov for pointing us to the “old arguments by Spencer and Erdős” used in the proof of Theorem 3 (see [14]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kalinowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boland, N., Dey, S.S., Kalinowski, T. et al. Bounding the gap between the McCormick relaxation and the convex hull for bilinear functions. Math. Program. 162, 523–535 (2017). https://doi.org/10.1007/s10107-016-1031-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-016-1031-5

Keywords

Mathematics Subject Classification

Navigation