Skip to main content

Advertisement

Log in

Understanding Self-assembly, Colloidal Behavior and Rheological Properties of Graphene Derivatives for High-performance Supercapacitor Fabrication

  • Feature Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Graphene derivatives, such as graphene oxide (GO) and reduced graphene oxide (RGO), have been widely used as promising two-dimensional nanoscale building blocks due to their fascinating properties, cost-effective production, and good processability. Understanding the intrinsic self-assembling, colloidal, and rheological features of graphene derivatives is of critical importance to establish the formation-structure-property relationship of graphene-based materials. This article reviews recent progresses in our studies of these interesting properties of graphene derivatives for developing high performance supercapacitors. The content is organized to include characteristics of the dispersions of graphene derivatives, self-assembly of nanosheets from liquid medium, colloidal behavior, rheological properties of the dispersions, processing methods based on the properties, and performance of the fabricated supercapacitors. GO and RGO nanosheets are proved to form different types of assembled structures with unique morphologies, such as ultrathin layer-by-layer films, porous aggregates, and nanoscrolls. The unique rheological properties of GO dispersions and hydrogels, feasible for both the traditional wet-processing and newly-developed technology like three-dimensional printing, are highlighted for their potential in structural manipulation and scalable fabrication of graphene-based devices. The research devoted to up-grading the performance of supercapacitors is presented in some details, which could be applicable for fabricating other graphene-based energy storage devices. Some challenges and perspectives in our point of view are given in the last part of this feature article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science2004, 306, 666–669.

    Article  CAS  PubMed  Google Scholar 

  2. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater.2007, 6, 183–191.

    Article  CAS  PubMed  Google Scholar 

  3. Park, S.; Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nanotechnol.2009, 4, 217–224.

    Article  CAS  PubMed  Google Scholar 

  4. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev.2010, 39, 228–240.

    Article  CAS  PubMed  Google Scholar 

  5. Dreyer, D. R.; Todd, A. D.; Bielawski, C. W. Harnessing the chemistry of graphene oxide. Chem. Soc. Rev.2014, 43, 5288–5301.

    Article  CAS  PubMed  Google Scholar 

  6. Shao, J. J.; Lv, W.; Yang, Q. H. Self-assembly of graphene oxide at interfaces. Adv. Mater.2014, 26, 5586–5612.

    Article  CAS  PubMed  Google Scholar 

  7. Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol.2008, 3, 101–105.

    Article  CAS  PubMed  Google Scholar 

  8. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano2010, 4, 4806–4814.

    Article  CAS  PubMed  Google Scholar 

  9. Hirata, M.; Gotou, T.; Ohba, M. Thin-film particles of graphite oxide. 2. Preliminary studies for internal micro fabrication of single particle and carbonaceous electronic circuits. Carbon2005, 43, 503–510.

    Article  CAS  Google Scholar 

  10. Szabó, T.; Szeri, A.; Dékány, I. Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon2005, 43, 87–94.

    Article  CAS  Google Scholar 

  11. Xiong, Z.; Liao, C.; Wang, X. A self-assembled macroporous coagulation graphene network with high specific capacitance for supercapacitor applications. J. Mater. Chem. A2014, 2, 19141–19144.

    Article  CAS  Google Scholar 

  12. Xu, Z.; Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun.2011, 2, 571.

    Article  PubMed  CAS  Google Scholar 

  13. Yu, D.; Goh, K.; Wang, H.; Wei, L.; Jiang, W.; Zhang, Q.; Dai, L.; Chen, Y. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat. Nanotechnol.2014, 9, 555–562.

    Article  CAS  PubMed  Google Scholar 

  14. Liu, Z.; Li, Z.; Xu, Z.; Xia, Z.; Hu, X.; Kou, L.; Peng, L.; Wei, Y.; Gao, C. Wet-spun continuous graphene films. Chem. Mater.2014, 26, 6786–6795.

    Article  CAS  Google Scholar 

  15. Yu, D.; Dai, L. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett.2009, 1, 467–470.

    Article  CAS  Google Scholar 

  16. Xu, Y.; Sheng, K.; Li, C.; Shi, G. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano2010, 4, 4324–4330.

    Article  CAS  PubMed  Google Scholar 

  17. Xu, Y.; Shi, G.; Duan, X. Self-assembled three-dimensional graphene macrostructures: synthesis and applications in supercapacitors. Acc. Chem. Res.2015, 48, 1666–1675.

    Article  CAS  PubMed  Google Scholar 

  18. Strauss, V.; Marsh, K.; Kowal, M. D.; El-Kady, M.; Kaner, R. B. A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv. Mater.2018, 30, 1704449.

    Article  CAS  Google Scholar 

  19. Manjakkal, L.; Núñez, C. G.; Dang, W.; Dahiya, R. Flexible selfcharging supercapacitor based on graphene-Ag-3D graphene foam electrodes. Nano Energy2018, 51, 604–612.

    Article  CAS  Google Scholar 

  20. Cottrill, A. L.; Liu, A. T.; Kunai, Y.; Koman, V. B.; Kaplan, A.; Mahajan, S. G.; Liu, P.; Toland, A. R.; Strano, M. S. Ultra-high thermal effusivity materials for resonant ambient thermal energy harvesting. Nat. Commun.2018, 9, 664.

  21. Min, P.; Liu, J.; Li, X.; An, F.; Liu, P.; Shen, Y.; Koratkar, N.; Yu, Z. Z. Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv. Funct. Mater.2018, 28, 1805365.

    Article  CAS  Google Scholar 

  22. Giust, D.; Lucío, M. I.; El-Sagheer, A. H.; Brown, T.; Williams, L. E.; Muskens, O. L.; Kanaras, A. G. Graphene oxide-upconversion nanoparticle based portable sensors for assessing nutritional deficiencies in crops. ACS Nano2018, 12, 6273–6279.

    Article  CAS  PubMed  Google Scholar 

  23. Dai, W.; Lv, L.; Lu, J.; Hou, H.; Yan, Q.; Alam, F. E.; Li, Y.; Zeng, X.; Yu, J.; Wei, Q.; Xu, X.; Wu, J.; Jiang, N.; Du, S.; Sun, R.; Xu, J.; Wong, C. P.; Lin, C. T. A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods. ACS Nano2019, 13, 1547–1554.

    CAS  PubMed  Google Scholar 

  24. Dasari Shareena, T. P.; McShan, D.; Dasmahapatra, A. K.; Tchounwou, P. B. A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano Micro Lett.2018, 10, 53.

    Article  CAS  Google Scholar 

  25. Tucek, J.; Blonski, P.; Ugolotti, J.; Swain, A. K.; Enoki, T.; Zboril, R. Emerging chemical strategies for imprinting magnetism in graphene and related 2D materials for spintronic and biomedical applications. Chem. Soc. Rev.2018, 47, 3899–3990.

    Article  CAS  PubMed  Google Scholar 

  26. Yu, G.; Han, Q.; Qu, L. Graphene fibers: advancing application in sensor, energy storage and conversion. Chinese J. Polym. Sci.2019, 37, 535–547.

    Article  CAS  Google Scholar 

  27. Mao, J.; Wu, F.; Shi, W.; Liu, W.; Xu, X.; Cai, G.; Li, Y.; Cao, X. Preparation of polyaniline-coated composite aerogel of MnO2 and reduced graphene oxide for high-performance zinc-ion battery. Chinese J. Polym. Sci.2020, 38, 514–521.

    Article  CAS  Google Scholar 

  28. Chen, H.; Müller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater.2008, 20, 3557–3561.

    Article  CAS  Google Scholar 

  29. Yang, X.; Zhu, J.; Qiu, L.; Li, D. Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv. Mater.2011, 23, 2833–2838.

    Article  CAS  PubMed  Google Scholar 

  30. Pandolfo, A. G.; Hollenkamp, A. F. Carbon properties and their role in supercapacitors. J. Power Sources2006, 157, 11–27.

    Article  CAS  Google Scholar 

  31. Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater.2010, 22, E28–E62.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, L. L.; Gu, Y.; Zhao, X. S. Advanced porous carbon electrodes for electrochemical capacitors. J. Mater. Chem. A2013, 1, 9395–9408.

    Article  CAS  Google Scholar 

  33. Han, S.; Wu, D.; Li, S.; Zhang, F.; Feng, X. Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv. Mater.2014, 26, 849–864.

    Article  CAS  PubMed  Google Scholar 

  34. Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett.2008, 8, 3498–3502.

    Article  CAS  PubMed  Google Scholar 

  35. Wang, D.; Wang, X. Self-assembled graphene/azo polyelectrolyte multilayer film and its application in electrochemical energy storage device. Langmuir2011, 27, 2007–2013.

    Article  CAS  PubMed  Google Scholar 

  36. Xiong, Z.; Gu, T.; Wang, X. Self-assembled multilayer films of sulfonated graphene and polystyrene-based diazonium salt as photo-cross-linkable supercapacitor electrodes. Langmuir2014, 30, 522–532.

    Article  CAS  PubMed  Google Scholar 

  37. Tang, B.; Yun, X.; Xiong, Z.; Wang, X. Formation of graphene oxide nanoscrolls in organic solvents: toward scalable device fabrication. ACS Appl. Nano Mater.2018, 1, 686–697.

    Article  CAS  Google Scholar 

  38. Tang, B.; Xiong, Z.; Yun, X.; Wang, X. Rolling up graphene oxide sheets through solvent-induced self-assembly in dispersions. Nanoscale2018, 10, 4113–4122.

    Article  CAS  PubMed  Google Scholar 

  39. Tang, B.; Gao, E.; Xiong, Z.; Dang, B.; Xu, Z.; Wang, X. Transition of graphene oxide from nanomembrane to nanoscroll mediated by organic solvent in dispersion. Chem. Mater.2018, 30, 5951–5960.

    Article  CAS  Google Scholar 

  40. Xiong, Z.; Liao, C.; Han, W.; Wang, X. Mechanically tough largearea hierarchical porous graphene films for high-performance flexible supercapacitor applications. Adv. Mater.2015, 27, 4469–4475.

    Article  CAS  PubMed  Google Scholar 

  41. Xiong, Z.; Yun, X.; Tang, B.; Wang, X. Ultratough cellular films from graphene oxide hydrogel: a way to exploit rigidity and flexibility of two-dimensional honeycomb carbon. Carbon2016, 107, 548–556.

    Article  CAS  Google Scholar 

  42. Yun, X.; Xiong, Z.; Tu, L.; Bai, L.; Wang, X. Hierarchical porous graphene film: an ideal material for laser-carving fabrication of flexible micro-supercapacitors with high specific capacitance. Carbon2017, 125, 308–317.

    Article  CAS  Google Scholar 

  43. Yun, X.; Lu, B.; Xiong, Z.; Jia, B.; Tang, B.; Mao, H.; Zhang, T.; Wang, X. Direct 3D printing of a graphene oxide hydrogel for fabrication of a high areal specific capacitance microsupercapacitor. RSC Adv.2019, 9, 29384–29395.

    Article  CAS  Google Scholar 

  44. Xiong, Z.; Yun, X.; Qiu, L.; Sun, Y.; Tang, B.; He, Z.; Xiao, J.; Chung, D.; Ng, T. W.; Yan, H.; Zhang, R.; Wang, X.; Li, D. A dynamic graphene oxide network enables spray printing of colloidal gels for high-performance micro-supercapacitors. Adv. Mater.2019, 31, e1804434.

    Article  PubMed  CAS  Google Scholar 

  45. Lerf, A.; He, H.; Forster, M.; Klinowski, J. Structure of graphite oxde revisited. J. Phys. Chem. B1998, 102, 4477–4482.

    Article  CAS  Google Scholar 

  46. Gudarzi, M. M. Colloidal stability of graphene oxide: aggregation in two dimensions. Langmuir2016, 32, 5058–5068.

    Article  CAS  PubMed  Google Scholar 

  47. Li, C.; Shi, G. Functional gels based on chemically modified graphenes. Adv. Mater.2014, 26, 3992–4012.

    Article  CAS  PubMed  Google Scholar 

  48. Liang, Y.; Hilal, N.; Langston, P.; Starov, V. Interaction forces between colloidal particles in liquid: theory and experiment. Adv. Colloid Interface Sci.2007, 134-135, 151–166.

    Article  CAS  PubMed  Google Scholar 

  49. Cheng, C.; Li, D. Solvated graphenes: an emerging class of functional soft materials. Adv. Mater.2013, 25, 13–30.

    Article  CAS  PubMed  Google Scholar 

  50. Kim, J. Y.; Cote, L. J.; Huang, J. X. Two dimensional soft material new faces of graphene oxide. Acc. Chem. Res.2012, 45, 1356–1364.

    Article  CAS  PubMed  Google Scholar 

  51. Schluter, A. D.; Payamyar, P.; Ottinger, H. C. How the world changes by going from one- to two-dimensional polymers in solution. Macromol. Rapid Commun.2016, 37, 1638–1650.

    Article  PubMed  CAS  Google Scholar 

  52. Knauert, S. T.; Douglas, J. F.; Starr, F. W. Morphology and transport properties of two-dimensional sheet polymers. Macromolecules2010, 43, 3438–3445.

    Article  CAS  Google Scholar 

  53. Koltonow, A. R.; Luo, C.; Luo, J.; Huang, J. Graphene oxide sheets in solvents: to crumple or not to crumple? ACS Omega2017, 2, 8005–8009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Konkena, B.; Vasudevan, S. Glass, gel, and liquid crystals: arrested states of graphene oxide aqueous dispersions. J. Phys. Chem. C2014, 118, 21706–21713.

    Article  CAS  Google Scholar 

  55. Naficy, S.; Jalili, R.; Aboutalebi, S. H.; Gorkin III, R. A.; Konstantinov, K.; Innis, P. C.; Spinks, G. M.; Poulin, P.; Wallace, G. G. Graphene oxide dispersions: tuning rheology to enable fabrication. Mater. Horiz.2014, 1, 326–331.

    Article  CAS  Google Scholar 

  56. Maiti, U. N.; Lee, W. J.; Lee, J. M.; Oh, Y.; Kim, J. Y.; Kim, J. E.; Shim, J.; Han, T. H.; Kim, S. O. 25th Anniversary article: chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Adv. Mater.2014, 26, 40–67.

    Article  CAS  PubMed  Google Scholar 

  57. Yang, X.; Qiu, L.; Cheng, C.; Wu, Y.; Ma, Z. F.; Li, D. Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films. Angew. Chem. Int. Ed.2011, 50, 7325–7328.

    Article  CAS  Google Scholar 

  58. Peng, Z.; Ye, R.; Mann, J. A.; Zakhidov, D.; Li, Y.; Smalley, P. R.; Lin, J.; Tour, J. M. Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano2015, 9, 5868–5875.

    Article  CAS  PubMed  Google Scholar 

  59. Yun, J.; Kim, D.; Lee, G.; Ha, J. S. All-solid-state flexible microsupercapacitor arrays with patterned graphene/MWNT electrodes. Carbon2014, 79, 156–164.

    Article  CAS  Google Scholar 

  60. Qi, D.; Liu, Z.; Liu, Y.; Leow, W. R.; Zhu, B.; Yang, H.; Yu, J.; Wang, W.; Wang, H.; Yin, S. Suspended wavy graphene microribbons for highly stretchable microsupercapacitors. Adv. Mater.2015, 27, 5559–5566.

    Article  CAS  PubMed  Google Scholar 

  61. Liu, Z.; Wu, Z. S.; Yang, S.; Dong, R.; Feng, X.; Müllen, K. Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene. Adv. Mater.2016, 28, 2217–2222.

    Article  CAS  PubMed  Google Scholar 

  62. Wu, Z. K.; Lin, Z.; Li, L.; Song, B.; Moon, K S.; Bai, S. L.; Wong, C. P. Flexible micro-supercapacitor based on in-situ assembled graphene on metal template at room temperature. Nano Energy2014, 10, 222–228.

    Article  CAS  Google Scholar 

  63. Gamota, D. R.; Brazis, P.; Kalyanasundaram, K.; Zhang, J. Printed organic and molecular elecronics. Springer Science & Business Media, Berlin, 2013.

    Google Scholar 

  64. Magdassi, S.; Kamyshny, A. Nanomaterials for 2D and 3D printing. John Wiley & Sons, New York, 2017.

    Book  Google Scholar 

  65. Shi, X.; Wu, Z. S.; Qin, J.; Zheng, S.; Wang, S.; Zhou, F.; Sun, C.; Bao, X. Graphene-based linear tandem micro-supercapacitors with metal-free current collectors and high-voltage output. Adv. Mater.2017, 29, 1703034.

    Article  CAS  Google Scholar 

  66. Bonaccorso, F.; Bartolotta, A.; Coleman, J. N.; Backes, C. 2D-crystal-based functional inks. Adv. Mater.2016, 28, 6136–6166.

    Article  CAS  PubMed  Google Scholar 

  67. Shaibani, M.; Akbari, A.; Sheath, P.; Easton, C.; Banerjee, P.; Konstas, K.; Fakhfouri, A.; Barghamadi, M.; Musameh, M.; Best, A.; Ruther, T.; Mahon, P.; Hill, M.; Hollenkamp, A.; Majumder, M. Suppressed polysulfide crossover in Li-S batteries through a high-flux graphene oxide membrane supported on a sulfur cathode. ACS Nano2016, 10, 7768–7779.

    Article  CAS  PubMed  Google Scholar 

  68. Zheng, J.; Zhao, Q.; Tang, T.; Yin, J.; Quilty, C.; Renderos, G.; Liu, X.; Deng, Y.; Wang, L.; Bock, D.; Jaye, C.; Zhang, D.; Takeuchi, E.; Takeuchi, K.; Marschilok, A.; Archer, L. Reversible epitaxial electrodeposition of metals in battery anodes. Science2019, 366, 645–648.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (973 Program, No. 2012CB933402).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Yuan Xiong or Xiao-Gong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, XW., Tang, B., Xiong, ZY. et al. Understanding Self-assembly, Colloidal Behavior and Rheological Properties of Graphene Derivatives for High-performance Supercapacitor Fabrication. Chin J Polym Sci 38, 423–434 (2020). https://doi.org/10.1007/s10118-020-2411-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2411-0

Keywords

Navigation